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Purpose: To develop and evaluate the diagnostic performance of an algorithm for multi-marker
radiomic-based classification of breast masses in dedicated breast computed tomography (bCT)
images.
Methods: Over 1000 radiomic descriptors aimed at quantifying mass and border heterogeneity, mor-
phology, and margin sharpness were developed and implemented. These included well-established
texture and shape feature descriptors, which were supplemented with additional approaches for con-
tour irregularity quantification, spicule and lobe detection, characterization of degree of infiltration,
and differences in peritumoral compartments. All descriptors were extracted from a training set of
202 bCT masses (133 benign and 69 malignant), and their individual diagnostic performance was
investigated in terms of area under the receiver operating characteristics (ROC) curve (AUC) of sin-
gle-feature-based linear discriminant analysis (LDA) classifiers. Subsequently, the most relevant
descriptors were selected through a multiple-step feature selection process (including stability analy-
sis, statistical significance, evaluation of feature interaction, and dimensionality reduction), and used
to develop a final LDA radiomic model for classification of benign and malignant masses, which was
then tested on an independent test set of 82 cases (45 benign and 37 malignant).
Results: The majority of the individual radiomic descriptors showed, on the training set, an AUC
value deriving from a linear decision boundary higher than 0.65, with the lower limit of the associ-
ated 95% confidence interval (C.I.) not overlapping with random chance (AUC = 0.5). The final
LDA radiomic model resulted in a test set AUC of 0.90 (95% C.I. 0.80–0.96).
Conclusions: The proposed multi-marker radiomic approach achieved high diagnostic accuracy in
bCT mass classification, using a radiomic signature based on different feature types. While future
studies with larger datasets are needed to further validate these results, quantitative radiomics applied
to bCT shows potential to improve the breast cancer diagnosis pipeline. © 2020 The Authors. Medical
Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.14610]
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1. INTRODUCTION

Radiomics is a growing research field that aims at the extrac-
tion of relevant information from medical images through
computerized image analysis methods.1 The motivation
behind radiomics is driven by the hypothesis that physiologi-
cal and pathological conditions (e.g., cancer) imprint differ-
ent types of information on radiographic images, and that this
information can be quantified and used to develop mathemat-
ical models for clinical decision support.1

Radiomics is being investigated in all areas of oncologic
imaging, especially for lung,2–4 prostate,5 and breast tumors,6

since they are the most commonly diagnosed cancers.7 Espe-
cially in the case of breast cancer, several studies have been
reported in literature that extract imaging biomarkers and
develop diagnostic classification models from different breast
imaging modalities.8–11 These biomarkers can usually be
divided into two major categories: texture and shape descrip-
tors. The former are traditionally extracted inside the region
of interest containing the prognostic value being investigated
(usually breast masses)12–17 after the boundary of the region
is identified through manual or automatic segmentation.
These texture biomarkers aim to quantify the brightness, con-
trast, and heterogeneity of the region. In comparison, shape
descriptors are usually calculated on a binarized mask repre-
senting the segmented mass boundary, and aim at quantifying
morphological aspects of the region in terms of size and con-
tour irregularities.18

Although these categories contain the most common
radiomic descriptor types reported up to now in literature,
some other studies have investigated the use of these and
other radiomic biomarkers in different ways, aiming to cap-
ture additional characteristics of tumor masses. For example,
some investigators have performed the radiomic analysis on
the mass periphery, relating the information extracted from
the mass margin to the tumor phenotype. This type of analy-
sis was conducted on breast masses acquired with different
imaging modalities, such as mammography,19,20 digital breast
tomosynthesis,21 breast MRI,22,23 and ultrasound,24,25 with
the aim of quantifying the degree of spiculation through mar-
gin sharpness and radial gradient analysis,19,22–24 the texture
and echogenicity along the mass boundary, and the diversity
in average intensity values over different margin regions.21,24

Therefore, several advancements are being pursued in
radiomics, both in the development of new descriptors and
algorithms, and in their application to different medical imag-
ing modalities. In the same vein, in this study a multi-marker
radiomic algorithm able to capture different tumor character-
istics was developed, and applied to diagnose breast masses
imaged with dedicated breast computed tomography (bCT).26

The algorithm includes several radiomic descriptors from dif-
ferent categories, including novel approaches to quantify
morphology, degree of infiltration, and texture differences in
peritumoral compartments. This multi-marker radiomic anal-
ysis, combined with the optimized contrast and resolution
characteristics of bCT, may help provide a strong

quantification of imaging biomarkers from breast masses,
potentially leading to a better characterization of breast
tumors.

2. MATERIALS AND METHODS

In this section, the proposed radiomic pipeline is
described, including image acquisition protocols, patient
dataset, image preprocessing and segmentation, and radiomic
feature development and implementation. The developed
radiomic features can be divided into three macro-groups
(Fig. 1): mass and border texture (Section 2.E), shape and
contour (Section 2.F), and margin (Section 2.G) descriptors.
Mathematical details and biological motivation are reported
for each feature group, along with additional testing on phan-
tom images for each newly developed biomarker. In the last
two sections, the methods used to analyze the extracted fea-
tures, and the developed radiomic-based classification model
for breast mass classification into benign and malignant
cases, are reported.

2.A. Image acquisition protocol

The image dataset used in this study was acquired with
bCT systems from two different institutions. One set of
images was acquired using the first- and second-generation
bCT prototype systems designed and developed at the
University of California (UC), Davis (California, USA) for
use in clinical studies under several IRB-approved proto-
cols.26,27 Both scanner prototypes house a continuous output
x-ray tube (Comet, Flamatt, Switzerland), with a nominal
0.4 mm focal spot size, and an 80 kV spectrum with
0.2–0.3 mm Cu filtration. A total of 500 projections were
acquired over a 360° scan using a Paxscan 4030CB flat panel
detector (Varian Medical Systems, Palo Alto, California,
USA) operating at 30 fps (approximately 17 s total scan time)
in 2 × 2 binning mode with dynamic gain. All projection
images were reconstructed using a variation of the Feldkamp-
filtered backprojection algorithm (with a Shepp-Logan ker-
nel) with an isotropic voxel size of 0.38 mm, and corrected
for shading artifacts using a maximum likelihood polynomial
fitting approach in the reconstruction space.28 The tube cur-
rent was adjusted for each patient scan based on breast size
and mammographic density, resulting in a mean glandular
dose of approximately 6.0 mGy.

The second set of images was acquired using a clinical
bCT prototype installed at Radboud University Medical Cen-
ter (Nijmegen, the Netherlands). The system, of a similar half
cone-beam geometry as those at UC Davis, has an x-ray tube
with a tungsten target and aluminum filter, a 0.3 mm nominal
focal spot, and a fixed tube voltage set to 49 kV, with the
resulting x-ray spectrum having a first half value layer of
1.39 mm Al. The detector is the same 4030CB as that used in
the UC Davis systems. The source-to-imager distance is
92.3 cm while the source-to-isocenter distance is 65 cm. The
x-ray tube operates in pulsed mode, with a constant 8 ms

Medical Physics, 48 (1), January 2021

314 Caballo et al.: Breast CT radiomics for mass diagnosis 314



pulse; the tube current is automatically set for each patient
breast by acquisition of two scout images normal to each
other (16 mA, 2 pulses of 8 ms each per projection). Accord-
ing to the signal level in the two scout images, the tube cur-
rent is set between 12 and 100 mA. A complete bCT scan
involves the acquisition of 300 projections over a full 360°
revolution of the x-ray tube and detector in 10 s. The images
were reconstructed with an isotropic voxel size of 0.273 mm
with a filtered backprojection algorithm with Shepp-Logan
kernel, and corrected for cupping artifacts with a proprietary
correction method. The dose varied for each patient breast,
with the average value for a breast of mean size and composi-
tion being 8.5 mGy.29,30

2.B. Dataset

The complete image dataset consisted of a total of 284
breast masses (178 benign and 106 malignant) from 211

patient scans (age: 35–86 yr old; mean: 57; median: 56). Of
these masses, 192 (115 benign and 77 malignant, from 138
patient images) were from the UC Davis dataset, and 92 (63
benign and 29 malignant, from 73 patient images) were from
the Radboudumc dataset. All masses were identified and
localized on the images by experienced breast radiologists.
All cysts were diagnosed through breast ultrasound while the
nature of the solid masses was biopsy proven. All images
were acquired by trained radiographers and collected as part
of ethics board-approved patient trials.

Prior to any analysis, approximately 70% of the masses
were assigned to a training set (202 masses, n = 133 benign
of which 87 were from the UC Davis dataset and 46 from the
Radboudumc dataset, n = 69 malignant of which 55 were
from the UC Davis dataset and 14 from the Radboudumc
dataset), and approximately 30% to a test set (82 masses,
n = 45 benign of which 28 were from the UC Davis dataset
and 17 from the Radboudumc dataset, n = 37 malignant of

FIG. 1. Scheme of the radiomic feature descriptors described in this study. [Color figure can be viewed at wileyonlinelibrary.com]
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which 22 were from the UC Davis dataset and 15 from the
Radboudumc dataset). The process was performed randomly,
after stratifying the cases according to mass type, to approxi-
mately respect the case distribution in both training and test
set. Masses extracted from the same patient scan were
assigned to the same set.

2.C. Image preprocessing

After collecting the patient scans, all images underwent
preprocessing to obtain a consistent dataset from the bCT sys-
tems of the two institutions, which included the upscaling of
the images from UC Davis to the same isotropic voxel size as
the images from Radboudumc (0.273 mm), and the compres-
sion of the dynamic range to 8 bits for all cases.

Subsequently, each 3D mass image was converted into a
set of multiple 2D images, to characterize the mass over mul-
tiple image views, as previously performed.31,32 For each
mass, nine square image patches of 128 pixel sides (approxi-
mately 35 mm, sufficient to contain all masses used in this
studies) were extracted, with the direction of each patch kept
parallel to one of the nine symmetry planes of an imaginary
cube circumscribing the mass (corresponding to the coronal,
sagittal, axial, and six oblique views). Such a nine-view
approach was chosen to approximate a 3D object as a stack
of different 2D images, allowing to capture each mass radio-
mic signature from different angles, and providing an aug-
mented dataset for overfitting prevention. Each mass-based
radiomic signature can then be obtained by combining the
individual signatures from each of the nine views, as
described later in Section 2.I.

2.D. Mass segmentation

All extracted mass patches were manually segmented using
the polyline toolbox in ImageJ® (LOCI, National Institutes of
Health, Bethesda, Maryland, USA) by a medical image analy-
sis scientist with over 3 yr of experience in bCT image analysis
and segmentation, under the supervision of a board-certified
breast radiologist with experience in bCT. This resulted in
binarized segmentation masks where the voxels are labeled as
either belonging to the mass or not, which will be used to
extract shape and contour features and to localize the texture
calculation within the mass and its margins (Sections
2.E–2.G).

As previously reported,32 a subset of the mass patches
(n = 35, extracted from as many different masses) was also
manually segmented by three breast radiologists. These addi-
tional segmentations were used to assess the stability of the
radiomic features over different mass contour delineations, to
reduce the bias in the derived radiomic signature (see Sec-
tion 2.I).

2.E. Texture biomarkers for tumor and border
heterogeneity

A total of 327 texture feature descriptors were imple-
mented to quantify imaging biomarkers both inside the mass

and within the mass border. The location of the inner part of
the mass and its border was extracted from the segmentation
mask, with the border defined as the annular region contain-
ing five voxels inside and outside the mass boundary along
each radial direction. The number of voxels included inside
and outside the mass border was set to five (i.e., the total bor-
der thickness was set to 10 voxels) to ensure the capture of all
border information.

Texture was quantified through descriptors belonging to
five major groups: histogram-based,33 Haralick,34 run
length,35 structural and pattern,36–39 and Gabor filters.40

All descriptors were previously implemented,33 and a
short description with mathematical details is reported in the
online supplemental material (Table S1).

2.F. Shape and contour biomarkers for tumor
morphology

The radiomic features described in this section aim to
quantify the morphological characteristics of breast masses,
which have been shown to be an important biomarker of
malignancy.18 A total of 28 descriptors calculated from the
binary segmentation mask are proposed, which include regio-
nal features based on geometrical characteristics,41–45 and
advanced metrics based on the mass centroid distance func-
tion,46–48 region boundary descriptors,46,49 and automatic
mapping of mass spiculae and lobes. These latter three major
feature groups, which aim at detecting different mass contour
shapes [of which some examples are shown in Figs. 2(a) and
2(b)] using diverse scales and mathematical formalisms, are
described in the following subsections. All features are
reported in Table S2.

2.F.1. Centroid distance features

This set of features is based on the centroid distance func-
tion (CDF) of the breast mass. The CDF defines the distance
from the mass centroid location (xC, yC) for each contour
pixel of the mass with coordinates (xi, yi):

CDFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi� xCÞ2þðyi� yCÞ2

q
(1)

This function implicitly encodes the frequency and magni-
tude of potential lobes, spiculae, and irregularities associated
with the mass boundary, showing higher peaks in those
regions of the contour that present a larger distance from the
mass centroid. In the ideal case of regions with radial sym-
metry, the CDF will appear as a low-frequency, high magni-
tude wave for irregular and lobulated masses, with the
frequency increasing (and the magnitude decreasing) as the
mass becomes more spiculated. For regular, elliptical masses,
the CDF will instead show two local minima (in the location
of the lowest mass radius, and its specular position), whose
amplitude is an indicator of the maximum absolute difference
among the mass radii. In the extreme case, the CDF becomes
constant for a perfectly round mass. Some examples of
extracted CDFs are shown in Fig. 2(c).
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Several well-established descriptors (briefly described in
the online supplemental material) were extracted from the
CDF to quantify the overall breast mass size in respect to the
local contour variations (mean, m1, standard deviation, M2),
the deviation from a perfect circle (area ratio), the degree of
disorder (entropy), and the mass contour roughness.46,48

In addition to these descriptors, an additional novel param-
eter calculated from the mass CDF was developed to quantify
different degrees of irregularity in mass contours. To calcu-
late this last feature, the CDF was first normalized to its max-
imum value, and Fourier-transformed:

an ¼FT CDFf g (2)

Min-max normalization was then performed for scale
invariance, and the first Fourier coefficient (corresponding to

the zero frequency) was set to 0 to make the series position-
independent. This process resulted in a series of normalized
Fourier coefficients corresponding to the CDF spectrum,
described as:

Cn ¼
0 n¼ 0

2 � an�min að Þ
max að Þ�min að Þ ; n¼ 1,2, . . .,N=2

0
@

1
A (3)

Finally, the energy content was calculated from this repre-
sentation, resulting in the proposed radiomic feature descrip-
tor:

FDenergy ¼ ∑
N=2

n¼1
C2
n (4)

FIG. 2. (a) Examples of breast masses, (b) respective contours of the segmented region, (c) respective centroid distance functions, and (d) power spectrum of the
centroid distance function. For benign masses with regular contours, the centroid distance function appears with a much lower frequency content as opposed to
malignant masses with irregular shapes. The Fourier descriptors associated with the benign mass show high energy content for the lower frequencies, with the
global energy content increasing for malignant masses with a high-frequency associated centroid distance function. [Color figure can be viewed at wileyonlinelib
rary.com]

Medical Physics, 48 (1), January 2021

317 Caballo et al.: Breast CT radiomics for mass diagnosis 317



In the case of a high degree of mass irregularity, higher
energy content will be distributed across the entire frequency
spectrum, resulting in a larger global energy. In the case of
regular masses, the energy will be mostly contained at low
frequencies. Given that the Fourier descriptors are normal-
ized, this will result in an overall lower energy content. Some
examples of these Fourier descriptors extracted from the
CDF of real breast masses are shown in Fig. 2(d). In addition,
a phantom study showing some results of the analysis of this
descriptor is reported in Fig. S1.

2.F.2. Region boundary descriptor

Another descriptor aiming at quantifying the mass contour
shape, previously proposed,46 was implemented, which can
distinguish between regular and irregular shapes by analyzing
the Fourier transform of the boundary pixel coordinates.
Mathematical details are reported, for completeness, in the
online supplemental material.

2.F.3. Spicule and lobe map (SLM)

The spicule and lobe map (SLM) aims at analyzing the
degree of spiculation and lobe depth by intersecting the origi-
nal mass contour with its convex enveloping curve. The SLM
is designed to discriminate between regular, lobulated, and
spiculated shapes. The convex enveloping curve, defined as
the smallest region enclosing the mass contour without
inflection points, is first generated around the mass, and then
iteratively eroded through a morphological circular structur-
ing element whose radius increases with the number of itera-
tions. At each iteration, the number of intersection points
between the eroded convex curve and the original mass
boundary is detected, and the process is terminated when no
further intersections are found. This process extracts informa-
tion about the mass contour inflections, allowing the ability
to map spiculae and lobes in terms of quantity, that is, maxi-
mum number of intersections, and size, that is, maximum
number of iterations performed prior to the stopping condi-
tion (some example on real breast mass contours are shown
in Fig. 3).

The maximum number of intersections, SLMintersections,
and the maximum number of iterations, SLMiterations, were
used to formulate two new metrics as follows:

SLMP ¼ SLMintersections �SLMiterations (5)

SLMR ¼ SLMintersections

SLMiterations
(6)

Both SLMP and SLMR are radiomic descriptors used to
map spiculae and lobes of breast masses. Regular masses are
expected to show a low number of intersections and a low
number of iterations (and therefore a low SLMP value). In
comparison, spiculated and irregular masses should be char-
acterized by a high number of intersections (with the number
of iterations being lower for the spiculated cases), and these
characteristics are quantified using the SLMR metric.

The utility of these newly proposed radiomic descriptors
in recognizing different realistic mass shapes was evaluated
through a phantom study, with a complete description of the
process (and related complete findings, Fig. S2 and Table
S3) reported in the online supplemental material.

2.G. Margin biomarkers for tumor infiltration degree
and peritumoral compartments

The last group of 672 texture-based radiomic features are
designed to quantify the degree of infiltration of the mass
and its potentially different peritumoral compartments. As
opposed to the descriptors presented in Section 2.E, which
investigate the texture inside the mass and along its global
border, the features proposed here aim at quantifying texture
in specific margin regions and orientations, providing com-
plementary information which may strengthen the radiomic
signature. These descriptors are divided into two major
groups and are described in the following subsections.

2.G.1. Radial gradient features

Radial gradient features are designed to quantify the
degree of margin sharpness of breast masses. It is expected
that the majority of benign masses present a well-defined
margin, indicating an absent or low degree of infiltration (as
is the case, i.e., of cysts, non-metastasized lymph nodes, and
fibroadenomas). In comparison, malignant masses tend to
contain a dense, intricated network of micro-vessels that are
often highly concentrated at the tumor periphery. These
micro-vessels are used to attract the blood from the existing
nearby vessels and therefore nourish the tumor by an increase
in blood supply. This usually results in ill-defined bound-
aries, spiculae, and, consequently, a larger degree of blurring
on medical images. To capture these characteristics through
image analysis, a group of features evaluating the radial mar-
gin gradient distribution was developed.

The boundary of the mass was first identified from the
segmentation mask, and the mass margin was extracted as
described in Section 2.E. The gradient magnitude (G) of the
image (I) was then calculated inside the margin by convolu-
tion with a Sobel filter (S).

G¼k I∗S k (7)

The radial gradient profile was defined for each mass
boundary point as the set of pixel values located along the
radial direction and covering the entire margin thickness, sim-
ilar to previous work.50,51

From each of the resulting N profiles (where N is the num-
ber of the mass boundary pixels), nine features (f) were
extracted: mean, standard deviation, maximum, minimum,
energy, kurtosis, skewness, entropy, and full-width half maxi-
mum (FWHM). Finally, to obtain single measurements
related to the entire mass margin, mean (Mradial gradient) and
standard deviation (Sradial gradient) for each of the previously
mentioned features were calculated and reported as the final
radiomic descriptors.
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Intuitively, these features are expected to assume different
values according to mass margin sharpness, allowing to
detect the overall margin infiltration degree (mean), and pos-
sible variations in margin sharpness along the mass contour
(standard deviation).

Examples of the application of some of these descriptors
on real breast masses are shown in Fig. 4. A phantom study
evaluating the effect of different blurring degrees on these
features is shown in Fig. S3.

2.G.2. Radial sector features

These final radiomic descriptors evaluate the image tex-
ture in discretized regions of the mass margin. A region-
based margin analysis is motivated by the fact that some
tumors may present multiple phenotypes over different mar-
gin locations, and could therefore show diverse texture char-
acteristics across different boundary compartments.52

To investigate this effect, the same 327 texture features (f’)
described in Section 2.E were calculated in 10 different radial

sectors (one every 36°) of the mass margin, and the final
radiomic descriptors were then represented by their mean
(Mradial sectors) and standard deviation (Sradial sectors) across the
10 sectors.

As in the previous subsection, the pair mean–standard
deviation was chosen to capture the overall value of each tex-
ture feature over the entire margin, and the degree of diversity
among the 10 radial sectors evaluated.

Examples of the application of some of these descriptors
on real breast masses are shown in Fig. 5.

2.H. Feature evaluation

All previously described, radiomic descriptors were first
extracted from the mass images of the training set, and their
individual power in discriminating between benign and
malignant masses was investigated. For this, each single fea-
ture was fed to a linear discriminant analysis (LDA) model,53

and the performance of the resulting linear decision boundary
was evaluated, feature by feature, in terms of area under the

FIG. 3. Examples of the application of the SLM descriptors on real breast mass contours, which evaluate the number of intersection points between the mass
boundary and its convex enveloping curve, and the number of shrinking iterations performed on the latter until no further intersections are found. Regular shapes
(a) result in few intersections and iterations while both increase as the shape becomes more irregular (b, c). [Color figure can be viewed at wileyonlinelibrary.c
om]
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receiver operating characteristics (ROC) curve (AUC). The
possible overlap with random chance (AUC = 0.5) was also
assessed, by observing the value of lower limit of the 95%
confidence interval (C.I.) for each AUC value, obtained
through bootstrapping (1000 bootstraps).54

Such an analysis was performed on the training set to
understand the overall power of each radiomic feature group,
and respective individual features, in characterizing the breast
masses without accounting for any potential interaction
among different descriptors.

2.I. Radiomic model

To develop a final radiomic-based model for mass classifi-
cation, another LDA classifier was trained based on multiple
radiomic features extracted from the training set masses, after
reducing the feature dimensionality through a three-step fea-
ture selection pipeline. First, the stability of each of the 1354
features with respect to the mass segmentation was evaluated
using the intraclass correlation coefficient (ICC)55 on the 35
mass patches segmented by the three breast radiologists.
Given the high initial feature dimensionality, and the need to

substantially reduce the segmentation bias for a reliable
radiomic analysis, the ICC threshold used to consider a fea-
ture as stable (and therefore not discarded) was set to higher
than 0.9. As an additional stability analysis, systemic differ-
ences between the imaging systems used at the two different
institutions were investigated, with the aim of discarding
those features that are highly dependent on specific imaging
system characteristics or acquisition settings. For this, 25
cysts were selected randomly from each of the two datasets
(UC Davis and Radboudumc), and the Mann–Whitney U-test
was used to test the null hypothesis that the two samples were
selected from populations having the same distribution. Fea-
tures whose distributions demonstrated a statistically signifi-
cant difference (P < 0.05) were eliminated from further
analysis. In other words, a feature was considered as robust
with respect to image acquisition settings, and therefore suit-
able for inclusion in subsequent analyses, if the null hypothe-
sis could not be rejected (P > 0.05). The p-values were not
corrected for multiple comparison, to be more conservative
on the number of features to retain, as previously per-
formed.56 For this analysis, only cysts were chosen, to ensure
that any significant difference in feature value found was due

FIG. 4. Examples of the application of some of the radial gradient descriptors on real breast masses. (a) Original breast masses; (b) gradient of the mass margin;
heat map of the (c) FWHM and (d) entropy extracted from each radial gradient profile. The benign mass is shown to be characterized by well-defined boundaries,
resulting, in this example, in more homogeneous radial gradient features along the margin. In comparison, malignant masses show a higher inhomogeneity in
radial gradient features, indicating a blurred and irregular margin. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 48 (1), January 2021

320 Caballo et al.: Breast CT radiomics for mass diagnosis 320



to imaging system characteristics or acquisition settings, and
not due to differences in lesion-type distribution between the
two imaging datasets.

Second, the remaining stable features were analyzed statis-
tically using the nonparametric Mann–Whitney U-test.57 Uni-
variate analysis was performed, to test on an individual
feature-basis the null hypothesis that samples (benign vs
malignant cases from the training set) were selected from
populations having the same distribution. The threshold for
statistical significance, P, was set to 0.05, and adjusted using
the Bonferroni correction58 to account for multiple compar-
isons. The denominator used for correction was given by the
total number of features analyzed, that is, selected after stabil-
ity to segmentation, and robustness to acquisition settings. As
a result of this process, nonstatistically significant features
were eliminated. To further reduce the feature space, the
ReliefF algorithm59 was used to select the final most informa-
tive descriptors among the stable, statistically significant fea-
tures, with the number of nearest neighbors in the algorithm,
K, set to five. This algorithm is a filter-based approach sensi-
tive to feature interactions, which calculates a relevance score
for each feature. This score is based on the identification of

feature value differences between nearest neighbors, and can
be applied to rank and select the most informative features. In
this study, only the features whose score ranked within the
90th percentile (or higher) of all scores were selected. Finally,
to limit the risk of biasing the findings due to potential over-
fitting, principal component analysis (PCA)60 was applied on
the selected features, and only the first five components were
used to train the LDA classifier.

The whole feature analysis and selection method described
so far, as well as the training of the LDA classifier, were per-
formed using the masses in the training set, to avoid biasing
results toward the test set.

Finally, once the model was trained, radiomic-based clas-
sification performance was evaluated on the test set. To pro-
vide results on a per-mass level, the LDA-predicted
probabilities for the nine views extracted from each mass
were averaged into a single score.

3. RESULTS

The phantom studies performed on some of the developed
features are described in detail in the online supplemental

FIG. 5. Examples of the application of some of the radial sector descriptors on real breast masses. (a) Original breast masses; (b) mass margin; heat map of the
(c) Contrast (Haralick) and (d) energy extracted from each radial margin sector. Benign masses with homogeneous margins result in homogeneous radial sector
features. In comparison, malignant cases show large differences in feature values over the entire margin length. [Color figure can be viewed at wileyonlinelibra
ry.com]
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material. Briefly, the FDenergy [Eq. (4)] increased with irregu-
larity in shape and was invariant to scale, as expected (Fig.
S1). The spicule and lobe map (SLM) features resulted in
good performance when discriminating between regular,
spiculated, and lobulated mass contours (Fig. S2). Lastly,
most of the radial gradient features could discriminate
between different degrees of blurring in the phantom mass
margin (Fig. S3).

Figures 6 shows the overall expression of all radiomic fea-
tures for all the bCT mass patches of this study.

3.A. Feature evaluation

Overall, over 90% of the features were found to possess
informative power (i.e., with an associated AUC 95% C.I. not
overlapping with random chance) in recognizing between
benign and malignant masses in the training set, when they
were fed one-by-one to an LDA classifier. Specifically, 318 of
327 mass texture and 311 of 327 border texture, 26 of 28
shape and contour, and 603 of 654 radial sector features
resulted in individual AUC values not overlapping with ran-
dom chance. For the radial gradient features, instead, only
one of 18 descriptor (the average of voxel standard deviations
over the N radial profiles) was found to be informative, with
an associated AUC value of 0.60.

The average individual AUC values for the mass and bor-
der texture were 0.68 (1 standard deviation = 0.03) and 0.67

(1 standard deviation = 0.04), respectively. Noninformative
features were minimum voxel value, gray-level 5th percentile,
Haralick correlation for all four angles evaluated, and run
length gray-level nonuniformity for 0° and 90° (both mass
and border), average fractal dimension (mass), and eight
Gabor features (border).

The average AUC value for the radial sector features was
0.70 (1 standard deviation = 0.07). Noninformative features
were all from first order, Haralick, and run length descriptors.

Of the shape and contour features (average AUC value of
0.75, 1 standard deviation = 0.11), only eccentricity and min-
imum radius were found noninformative. The remaining
descriptors showed, instead, the overall highest discriminant
power among all feature groups, with the highest AUC values
for individual features being 0.88 (SLMP), 0.86 (FDenergy),
and 0.85 (region boundary descriptor).

Table I and Fig. 7 summarize and expand the results
reported in this Section.

3.B. Radiomic model

The characteristics of the 82 test set masses (45 benign
and 37 malignant) used uniquely for performance evaluation
of the final radiomic model are reported in Table II.

Globally, 633 features were found to be stable across mul-
tiple segmentations, and 1062 features were found to be
robust to the imaging system used. Five hundred and twenty

FIG. 6. Radiomic feature expression for the bCT mass dataset. For visualization purposes, each plot was rescaled to a fixed dimension, and features were normal-
ized between 0 and 1. [Color figure can be viewed at wileyonlinelibrary.com]
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features were stable to both segmentation and system. The
results of the first two steps of the feature selection process
(stability to segmentation and imaging system, and statistical
analysis) are shown in Fig. 8. The percentage of features with
high stability to segmentation and robust to imaging system
was 46.8% (mass texture), 48.0% (border texture), 25.0%
(shape and contour), 61.1% (radial gradients), and 29.4% (ra-
dial sectors). After discarding the nonstatistically significant
features, these ratios decreased, in absolute values, by 1%
(mass texture), 3.5% (shape and contour), 61.1% (radial gra-
dients), and 1.2% (radial sectors) while they remained con-
stant for border texture features.

Overall, of the shape and contour features, simple descrip-
tors such as area, perimeter, axis lengths, and dispersion were
stable while complex metrics such as region boundary
moments and CDF descriptors were unstable. For mass and

border texture, and for radial sector features, there were at
least some stable features in all their subgroups. Radial gradi-
ent features were, overall, the most stable, but none of the
descriptors resulted in statistical significance.

After performing the third feature selection step through
the ReliefF algorithm, 36 features were selected (three mass
texture, 26 border texture, one shape and contour, and six
radial sector features), and their first five components (ob-
tained through PCA) used to develop the radiomic-based
LDA model. These features are reported in Table S4.

The final radiomic-based LDA model achieved an AUC
on the 82 test set masses of 0.90 (95% C.I. 0.80–0.96). The
ROC curve with 95% C.I. is shown in Fig. 9. At a 95% sensi-
tivity (specificity 56%), two of 37 malignant masses (1/6
ductal carcinoma in situ, 1/19 invasive ductal carcinoma) and
20 of 45 benign masses (4/10 fibroadenomas, 16/29 cysts)
were misclassified.

4. DISCUSSION

In this work, an algorithm for radiomic-based characteri-
zation of breast masses was developed, which includes sev-
eral descriptors aiming at quantifying imaging biomarkers in
terms of mass and border texture, morphology, and margin
sharpness and diversity. The radiomic signature deriving
from this multi-marker analysis resulted in high performance
in recognizing benign and malignant masses in bCT imaging.

Overall, the majority of the implemented and developed
radiomic features showed some informative power. Neverthe-
less, when analyzed on a feature-type basis, specific patterns
and differences in performance were observed among the
descriptor groups. While texture information, whether calcu-
lated inside the lesions or along their border in its entirety,

TABLE I. Results of the feature evaluation process. The table reports the AUC
values, per feature group, when each single feature was fed to an LDA model,
and the deriving linear decision boundary was used to discriminate benign
and malignant masses on the training set.

Feature group
AUC:
mean

AUC: standard
deviation

AUC:
min–max

AUC:
median

Mass texture features 0.68 0.03 0.50–0.74 0.69

Mass border features 0.67 0.04 0.50–079 0.68

Shape and contour
features

0.75 0.11 0.51–0.88 0.77

Margin – radial
gradient features

0.54 0.03 0.50–0.60 0.53

Margin – radial
sector features

0.70 0.07 0.45–0.84 0.71

FIG. 7. Percentage of features, per feature group, with informative power (i.e., with an associated lower extreme of the AUC 95% C.I. higher than 0.5), when each
single feature was fed to an LDA model, and the deriving linear decision boundary was used to discriminate benign and malignant masses on the training set.
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resulted in an overall relevant diagnostic power and good sta-
bility, the other feature types showed different characteristics.
Specifically, when advanced shape and contour descriptors
where analyzed individually, they resulted in the highest dis-
criminant power compared to all other feature types, but also
in the lowest stability. This led to their exclusion from the
final radiomic model, due to their diagnostic power being
strongly dependent on the mass segmentation results. In con-
trast, radial gradient features showed an opposite pattern,
with a high associated stability, but low discriminant power, a
result which led to the exclusion of all these descriptors from
the final radiomic signature. This finding suggests that ana-
lyzing the mass margins in their entirety (or in a finite num-
ber of discrete regions) provides more relevant information
compared to that obtained from analyzing radial directions,

and it could be due to the finite voxel dimension in the
images, and associated partial volume effect, limiting the
information extracted from one-dimensional profiles. The
introduced radial sector features behaved similar to the tex-
ture descriptors calculated on the entire mass border in terms
of stability and individual diagnostic power, but they also car-
ried additional, and complementary, information. This is
highlighted by the fact that, during the feature reduction step
performed through the ReliefF algorithm, some of the radial
sector features were ranked among the top descriptors and
were, therefore, included in the final radiomic model.

It is interesting to note that the majority of the features
included in the final signature were extracted from the mass
margin (border texture and radial sector features). This sug-
gests that a margin-based radiomic analysis may lead to a bet-
ter characterization of breast masses compared to analyzing
only the texture information inside the mass. This finding
aligns with the BI-RADS

® lexicon,61 where the correct evalua-
tion of the tumor margin is one of the strongest biomarkers in
the discrimination between benign and malignant breast
masses, and is reflected by the margin-based radiomic fea-
tures showing higher values for malignant lesions, indicating
a higher degree of disorder and infiltration (Fig. 6). Further
analysis of these features should be performed in future work,
to assess their correlation with the underlying tumor biology
characteristics observed in pathological samples.

While margin information seems to be the most relevant,
the final radiomic signature also included shape and textural
descriptors calculated inside the mass boundary, pointing to
the benefit of a multi-marker radiomic signature deriving
from different feature types. Of course, future studies with
larger image datasets are needed to further assess the validity
of our results, and of these conclusions. This is especially
true regarding feature stability, where additional analyses

TABLE II. Characteristics of the test set breast masses (N = 82).

Benign masses (n = 45)

Cyst 29

Fibroadenoma 10

Atypical ductal hyperplasia 1

Blunt duct adenosis 1

Hamartoma 1

Lymph node 2

Fibrocystic change 1

Malignant masses (n = 37)

Invasive ductal carcinoma 19

Ductal carcinoma in situ 6

Invasive lobular carcinoma 2

Invasive mammary carcinoma 3

Adenocarcinoma 1

Combination of tumor types 6

FIG. 8. Percentage of features, per feature group, with high stability to segmentation and robustness to acquisition settings (stable), and resulting in statistical sig-
nificance between benign and malignant masses (stable and statistically significant).
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performed with more images and more segmentation results
obtained from different readers (or the same readers multiple
times) could provide further insight on which features can be
used safely in the proposed radiomic model. Furthermore,
results from automated segmentation algorithms could also
be assessed, to study how feature stability changes when
going from manual to automatic segmentation.

Some of the blocks and parameters used in the proposed
radiomic pipeline could also be further investigated in future
and with additional images, including the evaluation of differ-
ent methods for reducing the feature space, different ICC
thresholds, and different classification models. While the
ICC threshold was already set to a conservative level (0.9),
and the choice of the feature reduction method has been
shown to have a minimal effect on the results,62 the classifi-
cation model selection could, on the contrary, impact the
results to a larger extent.62 In this study, LDA was chosen to
demonstrate the radiomic performance in a full feature-driven
setting, with the simplest decision boundary possible (i.e.,
linear). While this allowed for an objective evaluation of the
extracted radiomic signature, future work should evaluate the
performance variability, and potential improvement, when
using different machine learning techniques.

Due to the current limited clinical use of bCT worldwide,
resulting in limited data availability, in this study a radiomic
model based on mass images acquired with two different sys-
tems was developed. While this strengthened our study in
terms of generalizability, differences in imaging conditions
could affect the value of the extracted radiomic features63

(although this effect was mitigated by eliminating those fea-
tures with low robustness with respect to imaging system
characteristics and acquisition settings). To estimate the mag-
nitude of this effect, the developed radiomic pipeline (includ-
ing feature selection and model training) was performed
using the UC Davis dataset only (192 masses), and tested on
the Radboudumc dataset (92 masses), and vice-versa,

resulting in an AUC value of 0.88 and 0.85, respectively.
While this could suggest that the radiomic signature across
bCT devices is transferable (if a large training set is used),
limited conclusions can, currently, be drawn on the effect of
the imaging conditions on the resulting radiomic-based diag-
nostic accuracy. In fact, this slight difference in AUC values
is, probably, mostly due to the difference in size between the
two datasets. Therefore, further analyses on the effect of dif-
ferent imaging system and acquisition characteristics on the
extracted radiomic signature should be repeated when larger,
balanced datasets acquired from the different systems become
available (with each dataset possibly following the same dis-
tribution of lesion characteristics and types), and with com-
prehensive phantom studies.

In this study, the radiomic analysis and deriving classifi-
cation was performed by approximating the 3D breast
masses as a set of multiple 2D image patches extracted over
different image views. While a fully 3D analysis could pro-
vide further insights into tumor characterization, some previ-
ous studies have reported high performance with 2D
radiomic analyses of tomographic data,2,5,64 while others
also assessed the advantage of 2D over 3D radiomic fea-
tures,65 and the potential improvement in performance deriv-
ing from their combination.66 Therefore, a 2D analysis was
chosen for two major reasons. First, the advantages of a
lower computational complexity eased the validation of the
newly proposed radiomic descriptors, since working in a 2D
space reduced the complexity in mathematical formulation
and implementation, and the potential uncertainties deriving
from applying mathematical models (the radiomic descrip-
tors) to a discrete space with limited voxel dimensions (the
image). Second, a 2D approach allowed to increase the train-
ing set size by extracting multiple patches from each mass,
helping increase the robustness of the diagnostic classifier.
This can be useful both from the perspective of an aug-
mented dataset (thus preventing overfitting), and in terms of
respective feature dimensionality. In fact, working with lar-
ger training sets allows for the selection of a higher number
of features, which can potentially capture the different tumor
characteristics better and, therefore, strengthen the derived
final radiomic signature. Finally, it should be noted that the
proposed approach, although performed on a 2D basis, did
take advantage of the 3D nature of the images, since super-
imposition of tissue was still avoided, and the final radiomic
score for each mass was obtained by combining different
signatures extracted over multiple angles. This could provide
a stronger characterization compared to simply performing
the analysis on a single 2D patch collected from each mass,
as often performed in 2D radiomic analyses.67 To test this
latter hypothesis, the final radiomic model was used to
reclassify the test set masses based only on the signatures
extracted from a single patch (coronal view), resulting in a
significantly lower performance (AUC = 0.84 vs 0.90). Nev-
ertheless, a fully 3D radiomic approach should also be
investigated in future, to allow for the evaluation, with larger
image datasets, of the potential advantage of a fully 3D
radiomic signature over the current 2D approach.

FIG. 9. ROC curve of the final radiomic-based LDA model on the test set
masses. Dotted lines indicate the 95% C.I. calculated through bootstrapping
(1000 bootstraps). [Color figure can be viewed at wileyonlinelibrary.com]
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In this study, images were discretized to 8 bits prior to
any analysis. While the results obtained in this work are
encouraging, systematic studies on the effect of bin width
on the resulting radiomic features are to be performed in
future, especially if bCT becomes of widespread use.
These studies will allow for the definition of a standard-
ized image discretization methodology in bCT radiomics,
helping its potential advancement into the medical imaging
realm.

Although promising, the proposed radiomic algorithm can
be improved in future work. At a 95% sensitivity (specificity
56%), two malignant and 20 benign masses were misclassi-
fied. By isolating these cases, it was observed that the two
malignant masses (Fig. 10, panels a–b) presented a very small
diameter (8 mm � 1.2 mm) while the majority (15/20) of
benign cases (Fig. 10, panels c–q) presented, instead, an over-
all larger diameter (16 mm � 3.4 mm). Therefore, the mis-
classification is in line with the well-known influence of
lesion size on the diagnostic outcome, with a larger size
being usually associated with an increased likelihood of
malignancy.68 The five remaining benign misclassified cases
had a smaller size (8 mm � 0.9 mm), and misclassification
occurred probably due to their margins, which present some

degree of irregularity (Fig. 10, panels r–v). To improve per-
formance, future plans include increasing the dataset size, the
evaluation of additional strategies to merge the 2D view-
based radiomic signatures (in addition to averaging), and the
3D implementation of the described features, to investigate
the potential advantage of a fully 3D radiomic signature over
the current 2D multi-view approach. The use of automatic
mass segmentation will also be considered, as well as the
comparison, and potential synergy, of the proposed radiomic
pipeline with deep learning approaches based on convolu-
tional neural networks.

5. CONCLUSIONS

The proposed radiomic algorithm demonstrated high per-
formance in the classification of benign and malignant
masses in bCT imaging, thanks to a multi-marker radiomic
signature based on different texture, shape, and margin
descriptors. While further research is needed, the proposed
approach is a promising application for computer-aided diag-
nosis of breast cancer, potentially helping improve the diag-
nostic process through an increase in sensitivity or a
reduction of benign biopsies performed.

(a) (b)

(c) (d) (e)

(h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

(r) (s) (t) (u) (v)

(f) (g)

FIG. 10. Misclassified masses at 95% sensitivity operating point.
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the Supporting Information section at the end of the article.

Data S1. Supplementary methods and results.

Medical Physics, 48 (1), January 2021

328 Caballo et al.: Breast CT radiomics for mass diagnosis 328


