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Abstract

Purpose: A computer-aided diagnosis (CADx) system for breast masses is proposed, which
incorporates both handcrafted and convolutional radiomic features embedded into a single deep
learning model.

Approach: The model combines handcrafted and convolutional radiomic signatures into a
multi-view architecture, which retrieves three-dimensional (3D) image information by simulta-
neously processing multiple two-dimensional mass patches extracted along different planes
through the 3D mass volume. Each patch is processed by a stream composed of two concat-
enated parallel branches: a multi-layer perceptron fed with automatically extracted handcrafted
radiomic features, and a convolutional neural network, for which discriminant features are
learned from the input patches. All streams are then concatenated together into a final architec-
ture, where all network weights are shared and the learning occurs simultaneously for each
stream and branch. The CADx system was developed and tested for diagnosis of breast masses
(N ¼ 284) using image datasets acquired with independent dedicated breast computed tomog-
raphy systems from two different institutions. The diagnostic classification performance of the
CADx system was compared against other machine and deep learning architectures adopting
handcrafted and convolutional approaches, and three board-certified breast radiologists.

Results: On a test set of 82 masses (45 benign, 37 malignant), the proposed CADx system
performed better than all other model architectures evaluated, with an increase in the area under
the receiver operating characteristics curve (AUC) of 0.05� 0.02, and achieving a final AUC of
0.947, outperforming the three radiologists (AUC ¼ 0.814 − 0.902).

Conclusions: In conclusion, the system demonstrated its potential usefulness in breast cancer
diagnosis by improving mass malignancy assessment.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.2.024501]

Keywords: breast cancer; breast computed tomography; computer-aided diagnosis; deep learn-
ing; radiomics.

Paper 20325R received Nov. 30, 2020; accepted for publication Mar. 12, 2021; published online
Mar. 29, 2021.

*Address all correspondence to Ioannis Sechopoulos, Ioannis.Sechopoulos@radboudumc.nl

2329-4302/2021/$28.00 © 2021 SPIE

Journal of Medical Imaging 024501-1 Mar∕Apr 2021 • Vol. 8(2)



1 Introduction

Radiomics is a growing medical image analysis field that aims at the extraction of mineable
information from medical images, with the goal of developing computerized support systems
to improve clinical decision making.1

Among many potential clinical applications, cancer diagnosis is an area where radiomics is
growing substantially, where several advancements in the development of computer-aided
diagnosis (CADx) systems are being proposed.2–4 Although radiomics is being investigated
in many oncological fields, as could be expected efforts have been focused on the cancers
with the highest incidence and mortality, with lung,5 colon,6 and breast cancer7 being at the
forefront.8 In breast cancer imaging, the potential of radiomic-based CADx systems has been
studied for numerous modalities used in the clinical routine, including digital mammography,
digital breast tomosynthesis, and breast magnetic resonance imaging (MRI).9–11 Less work
has, instead, been reported on more recently developed imaging technologies. One of these
technologies is dedicated breast computed tomography (bCT), a modality that brings the
advantages of high-resolution, high-contrast imaging to the breast, providing 3D volume data
sets with contrast and resolution characteristics optimized for breast tissues and lesions.12,13

bCT overcomes the tissue superimposition problems of mammography and, to a lesser extent,
of digital breast tomosynthesis, resulting in improved visualization of breast masses.14 Due to
these characteristics, the application of radiomic-based CADx techniques to bCT may result in
the generation of important information for breast mass characterization, potentially improving
clinical performance.

For the development of CADx systems in medical imaging, two types of design have been
predominantly used in literature. They are based on either an engineered design and development
of handcrafted radiomic descriptors or on convolutional neural networks (CNNs). The former
approach involves a multi-step pipeline for segmentation of the region of interest, feature extrac-
tion and selection, and final classification.9,15 The latter is instead able to directly extract the most
appropriate features from the input radiological image and learn to perform the diagnostic task in
an end-to-end fashion.16

Despite the demonstrated overall higher performance of CNNs over handcrafted image
analysis pipelines, interest in both types of radiomic frameworks has been growing exponentially
over the last decade.15 While strengths and weaknesses of both methods have been repeatedly
demonstrated by numerous studies,15 less work has been reported that evaluates the combination
of the two strategies, studies their potentially most effective merging approach, or directly com-
pares their performance using the same patient image dataset. Some investigators have combined
the two approaches through a feature-level fusion, where handcrafted and convolutional radio-
mic features are extracted separately from the same image, concatenated, and fed to a late-stage
classifier to obtain the final predicted outcome.17–21 Other studies have instead opted for deci-
sion-level merging, where the two feature sets are first processed by independent machine learn-
ing models, and then the outcomes are combined through voting, averaging, or other fusion
approaches.22–25

Most of these studies focus on diagnosis,22–25 with a minority in the fields of detection,17

cancer survival,18,19 and segmentation,21 and reported overall benefit when the handcrafted
and convolutional approaches were combined. However, to the best of our knowledge,
most of the previously proposed studies consider handcrafted features and CNNs as separate
branches, which are merged at a later stage either via feature concatenation, or via decision-level
fusion.

In this work, we developed a CADx system that incorporates both strategies in a single
deep learning model, where learning occurs simultaneously for both the handcrafted and the
convolutional branch. The CADx system was developed to estimate the likelihood of malig-
nancy in bCT mass images, and leverages multiple computational blocks, in parallel and in cas-
cade, devoted to automated segmentation, feature extraction, and analysis. The classification
performance of the developed model was assessed on a test set of breast masses acquired with
multiple bCT systems, and then compared to that of both handcrafted and convolutional
approaches applied separately and to the performance of additional feature- and decision-level
fusion methods.
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2 Materials and Methods

The proposed deep learning system for computerized mass diagnosis works by processing multi-
ple two-dimensional (2D) views extracted from the same mass using multiple streams, each of
which is composed of two major branches. One branch processes the input image patch through
a handcrafted feature-based pipeline, including automatic mass segmentation, radiomic feature
extraction and selection, and a multilayer perceptron (MLP) neural network. The other branch
consists of a single CNN that converts the input image patch into the corresponding feature
vector after convolutional and pooling operations. The two branches are merged together into
a single stream, where backpropagation occurs simultaneously for both branches during training
and outputs a predicted malignancy probability on a mass image patch-basis. The predicted
probabilities from multiple 2D mass patches are then merged by evaluating different output
fusion techniques, to convert them into a single per-mass classification outcome.

2.1 Breast CT Systems and Image Dataset

The first cohort of patient data sets used in this study (Dataset 1) was acquired using the first and
second generation dedicated bCT systems designed and developed at the University of
California (UC), Davis (California). Their use in clinical studies was performed under several
Institutional review board-approved protocols.14,26 Each bCT patient scan consisted of a total of
500 projections acquired over a 360-deg orbital extent, which were reconstructed using a filtered
backprojection algorithm at an isotropic voxel size of 0.38 mm. The reconstructed volumes were
then corrected for shading artifacts using a maximum-likelihood polynomial fitting approach in
the reconstruction space.27

The second dataset (Dataset 2) was acquired with a bCT system28 (Koning Corp., West
Henrietta, New York) installed at Radboud University Medical Center (Nijmegen, The
Netherlands), with similar geometry, detector, and dose characteristics as those at UC
Davis.29 Each bCT scan consisted of 300 projections being acquired over the full angular range
and reconstructed with an isotropic voxel size of 0.273 mm using filtered backprojection. During
reconstruction, images were corrected for cupping artifacts using a proprietary correction
method. The dimensions of a bCT volume depend on the size needed to encompass the whole
breast, with the voxel size being fixed, and the number of voxels varying according to the image
field of view. The typical overall dimensions were ∼20 cm along each anatomical direction
(coronal, axial, and sagittal).

Both image datasets were acquired by trained radiographers, as part of other ethics board-
approved patient trials on bCT. Informed, written consent was acquired from all participating
women. Dataset 1, from UC Davis, consisted of a total of 462 images. The minimum age to
participate in the trial was 35 years. 170 women who had suspicious (BI-RADS® 4 and 5) lesions
at mammography were recruited and imaged between October 2005 and November 2010. Both
the ipsilateral and the contralateral breast were imaged, with some acquisitions performed both
without (n ¼ 340) and with (n ¼ 122) injection of contrast-enhancing material.

Dataset 2, from Radboudumc, consisted of a total of 156 images acquired between October
2016 and November 2019. These were acquired from women at least 50 years old with a suspi-
cious finding detected at mammographic screening (BI-RADS® 0, 4, or 5). Only the ipsilateral
breast was imaged, and no contrast-enhancing material was used for any acquisition.

In the UC Davis trial, exclusion criteria were women with a recent breast biopsy, history of
chronic asthma, positive urine pregnancy test or currently breast-feeding, suspected or confirmed
pregnancy, inability to lie motionless for up to 20 s, inability to understand the risk and benefits
of the study, and prisoners. For the Radboudumc trial, exclusion criteria were the presence of the
suspicious lesion in the axillary tail, bilateral mastectomy, suspected or confirmed pregnancy,
prior breast cancer or breast biopsy in the recalled breast in the last 12 months, presence of
palpable lesions, frailty, breastfeeding, or inability to cooperate.

For this study, only unenhanced images with visible breast masses contained in the field of
view, without any severe artifacts and with patient and radiological information available, were
selected. Masses were identified and localized on the images by experienced breast radiologists,
and all solid masses were biopsy-proven.
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After case selection, the final dataset used in this study consisted of a total of 284 masses (192
from Dataset 1, 92 from Dataset 2) collected from 211 patient images (138 from Dataset 1, 73
from Dataset 2). Of all masses, 106 were malignant (77 from Dataset 1, 29 from Dataset 2), and
178 were benign (115 from Dataset 1, 63 from Dataset 2).

Additional details about geometry, detector, and acquisition protocols for the bCT systems
used in this study were previously reported.29

2.2 Image Preprocessing

After image collection, all cases were preprocessed to obtain a consistent dataset from the two
bCT systems, including the upscaling through linear interpolation of the images from Dataset 1
to the same voxel size as Dataset 2 (0.273 mm), and the compression of the dynamic range to
8 bits for all cases.

Subsequently, all masses were divided into training, validation, and test set in a random man-
ner (stratifying on the class, benign/malignant), in an approximate proportion of 65% for train-
ing, 5% for validation, and 30% for testing. Specifically, the training set consisted of 187 masses
(81 and 43 benign, and 51 and 12 malignant from Dataset 1 and Dataset 2, respectively); the
validation set consisted of 15 masses (6 and 3 benign, and 4 and 2 malignant from Dataset 1 and
Dataset 2, respectively); the test set consisted of 82 masses (28 and 17 benign, and 22 and 15
malignant from Dataset 1 and Dataset 2, respectively). Details on individual masses of the test
set, used to validate all our methods, are reported in Table 1.

To simplify the classification of three-dimensional (3D) masses into a 2D problem, and at the
same time to increase the dataset size to prevent overfitting, the CADx system was designed to
work with multiple input 2D image patches that can characterize the lesion over multiple image
views.29,30 For this, nine square patches were extracted from each mass. The direction of each
patch was parallel to one of the nine symmetry planes of an imaginary cube circumscribing the
mass, corresponding to the coronal, sagittal, axial, and six oblique views, and intersecting the
mass center. The size of each patch was kept at 128 × 128 pixels for all directions.

These dimensions were sufficient to enclose each mass in our dataset in patches of a fixed
size. Masses were not rescaled to the size of the patches, so as to retain the original lesion size
information.

Some examples of breast masses and their respective nine views are shown in Fig. 1.

Table 1 List and details of test set breast masses (N ¼ 82).

Malignant masses (n ¼ 37) Invasive ductal carcinoma 19

Ductal carcinoma in situ 6

Invasive lobular carcinoma 2

Invasive mammary carcinoma 3

Adenocarcinoma 1

Combination of tumor types 6

Benign masses (n ¼ 45) Cyst 29

Fibroadenoma 10

Atypical ductal hyperplasia 1

Blunt duct adenosis 1

Hamartoma 1

Lymph node 2

Fibrocystic change 1
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This nine-view approach allowed to capture the masses from different angles, implicitly con-
taining 3D information for each case, and provided a first augmentation strategy that, as opposed
to traditional affine transformations, can be used for handcrafted radiomic analyses since the
radiomic signature can change over different mass planes.

All extracted patches were then manually annotated using the polyline toolbox in ImageJ®

(LOCI, National Institutes of Health, Bethesda, Maryland) by an image analysis scientist with
over three years of experience in breast image analysis, under the supervision of a board-certified
breast radiologist with experience in bCT imaging. The pairs of image patches and their respec-
tive manual annotations in the training and validation set were used to develop and optimize the
segmentation model, and for handcrafted radiomic feature extraction (described later). The man-
ually annotated patches from the test set were instead only used as a ground truth to evaluate the
automatic segmentation performance.

After annotation, to address the skewness in class proportion, which could bias the prediction
of deep learning algorithms toward the most frequently represented class, the training set was
corrected to a balanced ratio between benign and malignant examples. For this, the malignant
masses in the training set were oversampled by generating an additional example from each
malignant image patch. Instead of simply copying the examples, affine data augmentation was
used, with each augmented case being generated through random rotation (angle between 5 deg
and 35 deg), random horizontal or vertical mirroring, and random shearing (shear ratio between
10% and 30%). During each transformation, possible missing data at the boundary of the
augmented patches, for example, deriving from rotation or shearing operations, were handled
through nearest-neighbor interpolation.

2.3 U-Net for Automatic Mass Segmentation

Prior to the extraction of handcrafted radiomic features, a U-Net31 was trained to perform the
mass patch segmentation. In the training phase, this encoder–decoder architecture learns to map

Fig. 1 Examples of breast masses and corresponding nine 2D patches (dimensions of
128 × 128 pixels) from different planar views through the 3D volume. (a) Examples of benign
masses and (b) examples of malignant masses. Each column corresponds to the nine views
extracted from the same mass.
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between the input image patch and the respective manually annotated ground truth, learning the
segmentation task in a supervised fashion. Specifically, the first half of the architecture encodes
the input image into a feature vector via convolutional and max pooling operations. The second
half recovers the information via nearest-neighbour upscaling and convolutional filters. The
information is propagated between the two parts by concatenating the output of the encoding
convolutional blocks with each respective decoding branch, allowing the preservation of high
spatial detail. The encoding part consisted of four blocks of two 3 × 3 convolutions followed by
ReLU activations, with a subsequent 2 × 2 max pooling layer (stride equal to 2). The decoding
part consisted of four up-sampling blocks followed by a 2 × 2 convolutional layer that halved the
number of channels, a concatenation with the corresponding features from the encoding part, and
two consecutive 3 × 3 convolutional layers followed by ReLU activations. Dropout32 (probabil-
ity of 0.5) was used in the bottleneck of the network, before the last max pooling layer and before
the first up-convolution, for regularization. The last block of the network consisted in a softmax
layer that outputs the final probability map.31 To train the network, the Adam optimization
method33 was used on mini-batches of 16 examples, with binary cross-entropy as loss function,
and with an initial learning rate of 10−3, decayed exponentially every 10 epochs for a total of
50 epochs.

The complete network architecture and the number of filters used in each convolutional layer
are shown in Fig. 2. The trained network was applied to segment the test set mass patches, and
the pairs image patches—segmented masks were used for handcrafted radiomic feature extrac-
tion on the test set.

2.4 Radiomic Feature Extraction and Selection

Handcrafted radiomic features were extracted using a previously proposed algorithm29 able to
quantify mass characteristics related to texture, shape and contour, and margin, resulting in a
total of 1354 descriptors. Briefly, the algorithm calculates: (i) the image texture inside the mass
and along its boundary, by quantifying the mass heterogeneity using first-order,34 Haralick,35 run
length,36 structural and pattern (including local binary pattern,37 Hessian38 and Laws masks,39

and fractal dimension40), and Gabor descriptors;41 (ii) the mass degree of irregularity and
spiculation, using Fourier descriptors applied to the mass boundary and centroid distance
function,42–44 and automatic mapping of spiculae and lobes; and (iii) the mass degree of infil-
tration and potential differences in peritumoral compartments, using radial gradient analysis and
by evaluating textural differences over different peripheral mass region.45–47

Fig. 2 U-Net architecture implemented and used for breast mass segmentation on a 2D patch-
basis. The numbers above each convolutional block indicate the number of filters used for that
convolutional operation.
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Given the large initial dimension of the feature space, feature selection was performed to
minimize the risk of overfitting and to remove potentially uninformative features. For this, all
radiomic features were first extracted from the mass patches of the training set, and the less
informative features were discarded through a three-step feature reduction process,29 which
included stability and statistical analysis, and the final application of the Relieff algorithm.48

Stability analysis was performed by assessing the intra-class correlation of the radiomic features
with respect to segmentation variability of multiple breast radiologists and to the image acquis-
ition settings of the different bCT systems. This allowed to retain only those features whose value
was minimally affected by potential differences in mass segmentation due to inter-reader
variability and by differences in imaging conditions. Statistical analysis was performed with
univariate analyses, corrected for multiple comparisons, using the Mann–Whitney U-test,
to discard features with low diagnostic value on the training set. Finally, the Relieff algorithm
was used to rank and select the most informative features, with the aim of reducing the feature
set dimensionality for model overfitting prevention.

Complete details about feature extraction and selection were previously reported.29 The proc-
ess resulted in the vast majority of features being discarded, with the number of selected features
dropping from 1354 to 36. These selected features, detailed and discussed in our previous
study,29 quantify the texture (n ¼ 3), shape (n ¼ 1), and margin definition (n ¼ 26) and diversity
(n ¼ 6) of breast masses, allowing for the capture of multiple imaging biomarkers related to
malignancy.

2.5 CADx System

After developing the segmentation model and extracting the handcrafted radiomic features, a
CADx system was developed for automatic classification of breast mass patches. Given an input
mass patch, the proposed architecture processes the patch through two major branches: the hand-
crafted-based, and the convolutional-based (Fig. 3). The former is composed of the cascade of
automatic segmentation performed by the U-Net, a module for the extraction of the selected
radiomic features, and an MLP network aiming at processing the mass handcrafted radiomic
descriptors. The MLP is composed of four fully connected (FC) layers (size: 64; 64; 32; and

Fig. 3 Architecture of the CADx system. 2D patches are used as the input to the network and are
processed in parallel by a handcrafted branch (U-Net for automatic segmentation, radiomic feature
extraction, selection, and an MLP network), and a convolutional branch including a deep CNN.
The last FC layers from the two branches are concatenated, further processed by two additional
FC layers, and a final logistic unit that outputs the patch malignancy probability. In this double-input
architecture, the learning occurs simultaneously for both branches, with the errors backpropa-
gated throughout the whole architecture in an end-to-end fashion.
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5 units), with each output propagated to the subsequent layer through ReLU activations. Dropout
regularization (probability of 0.5) was used in each layer to prevent overfitting. All weights of the
network were randomly initialized (random uniform initialization between −0.05 and 0.05) and
biases set to zero.

The convolutional-based branch, instead, involves a CNN that directly processes the input
patch and converts the image feature space into the corresponding feature vector. The CNN is
composed of four convolutional layers (number of filters: 32, 64, 128, and 128) with ReLU
activations, alternating as many max pooling layers (all with a 2 × 2 kernel size, and a stride
equal to 2), and four final FC layers (layer size: 256, 128, 64, and 5 units). Batch normalization49

(momentum term: 0.99; epsilon: 10−3) and dropout (probability of 0.5) were used as regulari-
zation (before each pooling layer, and before the first FC layer, respectively).

To complete the CADx architecture, the two branches were merged by concatenating the last
FC layers from the MLP and the CNN, which are further processed by an additional two FC
layers (five units each). The output of the whole network is given by a single logistic unit that
performs the binary classification in terms of malignancy probability through a sigmoid acti-
vation function.

This architecture incorporates handcrafted and convolutional radiomic features in a single
model, where learning can occur simultaneously by backpropagating the error throughout both
branches at each training iteration. The model was trained for 250 epochs using the Adam opti-
mizer, with a batch size of 128 elements, binary cross-entropy as loss function, and a starting
learning rate of 10−3. Architecture and hyperparameters were chosen and tuned using the
validation set and were not further adjusted in the subsequent testing phase. Prior to training,
to speed up convergence, both handcrafted radiomic features (for the MLP branch) and image
patches (for the CNN branch) were normalized on the training set using min-max normalization.

2.6 Comparison with Additional Architectures

To compare the performance of the previously described CADx system over more traditional
approaches, four additional models were developed and are schematized in Fig. 4. These include:
(i) the use of only the MLP branch [Fig. 4(b)]; (ii) the use of only the CNN branch [Fig. 4(c)];

Fig. 4 (b)–(e) Schematics of the additional model architectures developed and used for compar-
isons with the proposed (a) CADx system. The CADx system architecture is shown in detail in
Fig. 3.
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(iii) a decision-level fusion, where the outputs from the two separated branches are combined at a
late stage through averaging [Fig. 4(d)]; and (iv) a feature-level approach, where handcrafted and
convolutional features are extracted separately by the two branches, and then fed to a late-stage
classifier for outcome prediction [Fig. 4(e)]. Details about the implementation and training of
these additional models are reported in Appendix.

2.7 Multi-View Output Fusion Strategies

After development of the patch-based CADx system and comparing its performance with addi-
tional architectures, different output fusion strategies were implemented to merge the predicted
probabilities extracted from the nine views of each mass, so as to obtain a single malignancy
probability score on a per-mass basis. To combine the nine-view mass malignancy probabilities
into a single classification score, four output fusion methods were investigated (Fig. 5).

First, the nine predicted probabilities extracted from each mass view were averaged together,
and this final probability score was thresholded to result in binary classification decision
[Fig. 5(a)].

Second, the averaging operator was simply substituted with a majority voting approach
[Fig. 5(b)], in which the nine-view probabilities from each mass were first dichotomized (0 for
benign, 1 for malignant), and then the predicted per-mass classification outcome was given by
the most frequently represented class.

In the third output fusion strategy, a more advanced approach to combine the malignancy
likelihood of the nine views is proposed [Fig. 5(c)]. The goal of this approach is to determine
how many views classified as malignant are sufficient to correctly consider the whole mass as
malignant. This approach aims to test the hypothesis that only a few views with a high malig-
nancy probability could be sufficient to correctly classify the whole mass as malignant, regard-
less of the predicted probability values of the other remaining views. For this, first a malignancy
likelihood threshold T was defined (between 0 and 1), and then the whole mass was classified as
malignant if at least N of the nine probabilities were larger than the selected threshold T.
The experiment was repeated for five different values of T (0.1, 0.25, 0.5, 0.75, and 0.9), and

Fig. 5 Schematics of the multi-view output fusion strategies, implemented to merge the 9 pre-
dicted probabilities from each view of the mass into a single malignancy score: (a) averaging;
(b) majority voting; (c) view malignancy likelihood; (d) multi-view concatenation.
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with N ranging between 1 and 9 views for each T investigated. In each condition, the CADx
performance was calculated in terms of sensitivity (or true positive rate, TPR) and false positive
rate (FPR), and the final optimal pair (T;N) was selected to provide the highest sensitivity asso-
ciated with the lowest FPR. Further details about this method are reported in Appendix.

Lastly, a fully supervised architecture (multi-view concatenation) was implemented to
automatically provide a unique predicted probability directly from the nine input mass views
[Fig. 5(d)]. For this, a nine-stream network architecture was implemented, with each CADx
stream processing each of the mass views separately. The output merging is performed by con-
catenating the last FC layers (five neurons each) from each stream, and by connecting them to a
final layer with a softmax activation function for outcome prediction. This model was re-trained
as explained in Sec. 2.5, with a further data augmentation strategy to account for the larger
number of parameters to be adjusted during learning. Given that this multi-input model is nine
times bigger than the single CADx patch-based model, and given the isotropic voxel size of the
bCT images, training data were further augmented by inputting each of the nine streams with all
patches deriving from all nine views. Specifically, for each training mass, the index of each of the
nine views was shifted by one for nine times, resulting in nine groups of nine patches each
(extracted from the same mass) that are ordered differently for each group. All groups are then
used as training examples for the multi-view concatenation model, globally resulting in the train-
ing data augmented by a factor of nine.

2.8 Performance Evaluation

All developed models were evaluated using the masses from the test set, after extracting the nine
patches from each case. Automatic mass segmentation performed by the U-Net (Sec. 2.3) was
quantitatively compared against the ground truth manual annotation on all nine views extracted
from the test set masses, by calculating the Dice similarity coefficient (DSC), sensitivity and
precision metrics. To compare the performance of the patch-based CADx system (explained in
Sec. 2.5) against the four more traditional architectures (as explained in Sec. 2.6 and Fig. 4), the
F1 score and the area under the receiver operating characteristics (ROC) curve (AUC) were used.
For this comparison, all nine patches extracted from each mass of the test set were used, and the
95% confidence interval (C.I.) was calculated for each AUC value using bootstrapping with
1000 bootstraps.50 The difference between the ROC curve of the CADx system and the other
four model architectures was also analysed statistically using the Obuchowski non-parametric
method.51 This statistical method was used because it allows for ROC comparisons in datasets
containing clusters of inter-correlated data (i.e., the nine patches extracted from each mass). All
four multi-view output fusion strategies (Sec. 2.7 and Fig. 5) were compared at two operating
points (sensitivity 95% and 90%). This method for comparison was used because the view malig-
nancy likelihood strategy [Fig. 5(c)] works for a defined number of views and a probability
threshold, and therefore does not allow for ROC analysis.

Finally, the best-performing model (in terms of the multi-view output fusion approach) was
compared to three board-certified breast radiologists, who were asked to provide a malignancy
grade for each mass of the test set. For a fair comparison, the radiologists were given the same
information as the CADx system, i.e., only the nine views extracted from each mass of the test
set. For each set of nine views, the radiologists were asked to provide a number between 1 (def-
initely benign) and 10 (definitely malignant). Each radiologist’s performance, in terms of ROC
curve, was used for comparison on a per-mass basis. The 95% CI on the AUC was calculated for
each ROC curve (bootstrapping, 1000 bootstraps), and the significance of the difference in AUC
values between the radiologists and the CADx system was statistically evaluated with the
method proposed by Delong et al.52 for ROC comparisons.

3 Results

Automatic segmentation achieved a DSC of 0.91� 0.05 for the benign and 0.88� 0.07 for the
malignant masses (Table 2). Some examples of manual and automatic segmentation are shown
in Fig. 6.
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Results of the comparison of the CADx system with the other four additional architectures
(calculated on a patch-basis on all mass views extracted from the test set masses) are shown in
Fig. 7 and Table 3. Overall, the CADx system performed better than the other models, with an
AUC of 0.876. When the two blocks were treated separately [Figs. 4(b)–4(c)], the CNN out-
performed the MLP (AUC of 0.835 and 0.794, respectively). The models with decision-level and
feature-level fusion [Figs. 4(d)–4(e)] achieved similar performance to the CNN alone (AUC of
0.836 for the decision-level fusion, 0.843 for the feature-level fusion approach).

Regarding the multi-view output fusion strategies performed on the CADx system to merge
the 9 patch-based predicted probabilities (Table 4), the multi-view concatenation outperformed
the other models, with an FPR of 22% and F1 score of 82%, for a sensitivity of 95%. The
malignancy likelihood model reached the highest performance when only one view with a high
associated malignancy probability (T ¼ 0.9) was considered to classify a mass as malignant
(further details are provided in the Appendix), with an FPR of 31% and F1 score of 74%, for
a sensitivity of 95%. The fusion approach based on probability averaging led to similar results
(FPR 29% and F1 score of 76%, for a 95% sensitivity), whereas the majority voting performed
worse (FPR of 78% and F1 score of 69% for a 95% sensitivity).

Finally, when compared to the three radiologists, the best performing CADx model
(multi-view concatenation) performed better in the classification of the 82 test set masses
(Fig. 8, Table 5), with an AUC of 0.947, against an average radiologist AUC of 0.859� 0.044.

Table 2 Performance of the U-Net (mean and standard deviation) in the automatic segmentation
of the test set masses, expressed in terms of DSC, sensitivity, and precision.

DSC Sensitivity Precision

Benign masses, n ¼ 405 patches (45 masses) 0.91 (0.05) 0.95 (0.05) 0.88 (0.09)

Malignant masses, n ¼ 333 patches (37 masses) 0.88 (0.07) 0.87 (0.10) 0.91 (0.09)

Fig. 6 Examples of (a) benign and (b) malignant mass patches, respective manual ground
truth annotations (green contours), and automatic U-Net-based segmentation (red contours).
Yellow parts of the contour indicate a perfect overlay between automatic and manual
segmentation.
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Fig. 7 ROC curve showing the performance of the proposed CADx system and the additional four
architectures evaluated for comparison. The five different model architectures were tested on a
mass patch-basis (n ¼ 405 benign patches from 45 masses, and n ¼ 333malignant patches from
37 masses).

Table 3 Performance of the CADx system, compared with the performance of the additional
architectures evaluated, calculated on all test set mass patches (from 45 benign and 37 malignant
masses). The p-values reported refer to the statistical comparison of the ROC curve of the CADx
system to that of each other model architecture evaluated using the Obuchowski non-parametric
method.

AUC 95% CI P-value F1 score

CADx system 0.876 0.846 to 0.90 NA 0.820

MLP 0.794 0.759 to 0.825 0.002 0.702

CNN 0.835 0.801 to 0.861 0.079 0.738

Decision-level fusion 0.836 0.804 to 0.864 0.083 0.754

Feature-level fusion 0.843 0.813 to 0.870 0.218 0.758

Table 4 Results of the different multi-view output fusion strategies performed
on the CADx system to merge the nine probabilities extracted from each of
the nine mass views using two operating points with high sensitivity.

Sensitivity (%) FPR (%) F1 score (%)

Averaging 95 29 76

90 27 83

Majority voting 95 78 69

90 57 79

Malignancy likelihood 95 31 74

90 20 82

Multi-view concatenation 95 22 82

90 20 87
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4 Discussion

In this study, a computerized system for the diagnosis of masses acquired with independent
dedicated bCT devices was developed and validated. The system works by merging the prob-
abilities predicted from multiple 2D patches, extracted from a single 3D mass along multiple
planar orientations. It is based on both handcrafted and convolutional radiomic features, which
are embedded into a single multi-view architecture, processed, and finally merged to provide the
mass-based classification outcome.

When the computerized diagnostic task was performed either by only using a CNN, or using
automatic mass segmentation and a handcrafted feature-based MLP model, the CNN outper-
formed the MLP. This finding was consistent with the results from previously reported studies
that demonstrated the higher performance of CNNs over approaches based on handcrafted
descriptors, due to the CNN architecture’s ability to automatically extract the most appropriate
feature set from an image, and use them for an optimized learning.15 Furthermore, although
convolutional models are usually more complex than shallow networks (and therefore require
further hyperparameter tuning and optimization), their use obviates the need for the design,
extraction, and selection of radiomic features. Moreover, CNNs can be used to extract relevant
features directly from the input images, avoiding the segmentation step. This could be beneficial
to avoid any potential bias in the radiomic analysis introduced by specific segmentation results,
deriving from either expert human readers or specific algorithms. Although this bias can be
reduced by discarding the features that are sensitive to intra-case variations in mass contour
delineation,53 as performed in this study, a poor segmentation could still lead to a suboptimal
mass characterization, thereby negatively affecting the predicted outcome.

Fig. 8 Results of the best-performing CADx system (with output fusion through multi-view con-
catenation) and three board-certified breast radiologists in the classification of the 82 test set
breast masses.

Table 5 Results of the comparison between the best-performing, mass-based CADx system
(with output fusion through multi-view concatenation) and three board-certified breast radiologists
in the classification of the 82 test set breast masses. The p-values reported refer to the statistical
comparison of the performance of the system to that of each radiologist.

AUC 95% CI P-value

CADx (multi-view concatenation) 0.947 0.881 to 0.980 NA

Radiologist 1 0.902 0.821 to 0.953 0.27

Radiologist 2 0.861 0.758 to 0.926 0.07

Radiologist 3 0.814 0.699 to 0.891 0.01
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In our previous work,29 an AUC in breast mass classification of 0.90 was achieved using only
handcrafted radiomic features (combined with principal component analysis) deriving from
manual segmentation. To evaluate the effect of automatic segmentation on the predicted diag-
nostic performance in our handcrafted pipeline, the MLP model of this work was tested on a
mass-basis (using the average operator as output fusion approach, as performed in Ref. 29), and
an AUC of 0.87 was obtained. This confirmed, on the one hand, the strong effect of segmentation
on clinical outcome prediction in radiomic analyses. On the other hand, results from this present
study obtained with the CADx system (AUC 0.95), and based on automatic segmentation,
pointed to the possibility to lower the segmentation effect by increasing the complexity of the
classification model. Therefore, while further research is needed to better investigate these
results with larger datasets, hybrid approaches based on both handcrafted and deep learning
radiomics seem to have potential to improve radiomic pipelines.

When the convolutional and the handcrafted approaches were combined at an output-level
(i.e., when the predicted probability determined from the CNN was averaged with the predicted
probability from the MLP) or combined at a feature-level (i.e., when convolutional and hand-
crafted descriptors were concatenated and fed to an independent late-stage classifier), the AUC
changed slightly compared to when using only the CNN. Instead, the proposed CADx system
performed better than all four of the other models evaluated. This finding suggests that embed-
ding the two approaches in the same architecture could provide advantages compared to treating
the two branches separately, or merging the feature vectors at a late stage. These advantages
could be due to the learning occurring in parallel for both branches, which facilitated the opti-
mization of all network parameters, accounting for both the handcrafted and the convolutional
inputs simultaneously. However, comparisons among the different investigated architectures
should be further evaluated in future, with a larger test set, to assess whether the proposed
CADx architecture can achieve a statistically significant superior performance. Furthermore,
with a larger test set, comparisons of the developed multi-view architectures against radiomic
analyses based on 3D CNNs should also be assessed. This may result in an increase in diagnostic
performance, thanks to leveraging the fully tomographic nature of bCT images, and due to the
advantage of avoiding any output fusion strategy.

Regarding the output fusion methods, the multi-view concatenation approach provided the
best per-mass classification performance, likely attributed to its ability to implicitly account for
3D information by incorporating multiple mass views into a single deep learning model. In fact,
the multi-view concatenation approach merged the patch-based output of each prediction stream
into a common classification layer. This strategy therefore allowed for the ability to better inte-
grate the 3D characteristics of the mass by comparing the output of multiple networks in parallel,
in a configuration where the parameters of the layers from multiple streams are shared. The other
output fusion strategies considered, instead, the input 3D mass as a stack of independent patches,
potentially reducing the amount of 3D information retrieved from multiple views. However, as
previously mentioned, approaches that use the full volumetric input information (i.e., not
patched-based) may also be worth considering in the future to evaluate the potential gain in
performance prediction.

Of the other output fusion strategies, the majority voting resulted in the highest FPR, for the
same values of sensitivity used to test the performance of all models. This can be attributed to the
fact that dichotomizing the nine view probabilities prior to any fusion operations results in a loss
of information, as it does not leverage the continuous nature of the estimated malignancy prob-
ability of each of the nine views.

Regarding the comparison of the final mass-based CADx system to the performance of breast
radiologists, the system performed better (although statistical significance was reached only in
one case), indicating its potential for automated breast mass diagnosis that outperforms visual
perception. However, for these comparisons, the radiologists were provided the same informa-
tion as the CADx system, i.e., a set of nine views for each test set mass. While, in a real clinical
setting, radiologists perform diagnostic decisions on a full image-basis (in addition to any other
relevant clinical information), this strategy was adopted for a fair comparison between the CADx
system and expert human visual perception. However, such an analysis should be repeated in
future studies, possibly with a larger cohort of patient data sets, by evaluating the possible human
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performance improvements when the radiologists are provided with the entire bCT volume
data set.

While encouraging, the results reported herein were derived from a still limited test set (a fact
that, at the moment, greatly limits any relevant, clinically applicable conclusion), and should
therefore be confirmed in future studies using a much larger number of test cases. Among the
major limitations, the relatively limited available dataset size is to be acknowledged. While clini-
cal trials on dedicated bCT are currently being performed only in a few research centers around
the world, the inclusion of additional testing masses could provide further insights about the
performance of the developed CADx system, by allowing for improved statistics for each
ROC comparison. Moreover, only mass-like lesions were included in this study; while bCT has
been shown to provide a greater benefit in mass visualization compared to calcifications14

(in comparison with mammography), the latter will be included in future work to develop a
complete diagnostic system.

Regarding the architecture of the proposed CADx system, future work could also include the
embedding of the U-Net for automatic segmentation as an extra channel to the CNN, allowing
the CNN to potentially take advantage of automatic segmentation. This might further increase
the classification performance, since the CNN would be fed also with the segmented mass
patches, in addition to the raw ones. The potential benefit of this additional strategy, compared
to the one proposed, should be properly assessed in the future with a much larger cohort of
patient data sets, where possible differences in performance can be perceivable.

Finally, future work involves the evaluation and assessment of a fully 3D-based CADx sys-
tem, with both handcrafted radiomic features and CNNs implemented to process 3D recon-
structed volumes. While the 2D-based approach presented in this study inherently increased
the dataset size, through the extraction of nine views from each mass, and 3D information was
implicitly obtained through the multi-view strategy, a future fully 3D approach might help
achieve further insights in CADx of breast masses, especially if larger image datasets become
available.

5 Conclusions

ACADx system for images of breast masses acquired with dedicated bCTwas developed, which
incorporates handcrafted and convolutional radiomic features embedded into a single deep learn-
ing model. The system retrieves and concatenates the information acquired from multiple 2D
mass views to estimate a single per-mass prediction value, in a configuration where learning
occurs simultaneously for each view. The proposed method outperformed other machine and
deep learning architectures adopting handcrafted and convolutional approaches, and resulted
in a better performance prediction compared to the visual assessment of three board-certified
breast radiologists.

While future studies with larger image datasets are needed to confirm the performance of the
proposed approach, results demonstrated its potential usefulness for breast cancer diagnosis by
improving mass malignancy assessment. Furthermore, our findings point to the potential benefit
of combining engineered and convolutional radiomic approaches over using single independent
architectures, especially for image datasets still limited in size where the learning of convolu-
tional models may be suboptimal.

6 Appendix

6.1 A.1. Comparison with Additional Architectures

To compare the performance of the proposed CADx system over more traditional architectures,
4 additional models were developed (Fig. 4).

First, the performance resulting from using only either the MLP or the CNN branch sepa-
rately was investigated [Figs. 4(b) and 4(c)]. For this, the two branches were simply disconnected
from the CADx architecture, and a final sigmoid-based unit was added to the output of each
model to perform the binary classification. While the architectures and learning algorithms were
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not modified compared to when training the CADx system, the learning rate needed to be fine-
tuned using the validation set for the MLP, resulting in the best value being 10−4.

A decision-level model [Fig. 4(d)] was developed by considering the MLP and CNN blocks
described above separately, but the final classification score was provided based on the average
of the two outputs together (one from the CNN, one from the MLP). This was done to assess
whether the two radiomic strategies (handcrafted and convolutional) could be successfully com-
bined only at an output level, and therefore evaluate if the two networks could be treated and
trained separately (with the advantage of a reduction in training cost) and still benefit from a
simple output probability merging.

The last model [feature-level, Fig. 4(e)] consists of the CNN applied to the image patches as a
feature extractor, and the extracted convolutional features concatenated at a late stage with the
respective handcrafted features from the same image patch. The resulting concatenated feature
vector was then fed to a late-stage classifier for final prediction. For this feature-level model, the
last two layers were removed from the CNN architecture described above, and the CNN was
applied to extract 64 deep features from the training set mass patches, which were concatenated
with the respective 36 handcrafted features. The derived feature vectors were used to train a late-
stage model for diagnostic outcome prediction. For this late-stage classifier, the same architec-
ture of the MLP described above and detailed in the main manuscript (Sec. 2.5) was used, and
fine tuning of the hyperparameters was performed on the validation set (Adam optimizer, learn-
ing rate 10−4).

6.2 A.2. Multi-View Output Fusion Strategies—View Malignancy Likelihood

This output fusion approach aims to combine the malignancy likelihood predicted by the CADx
system from the nine views extracted from each mass, so as to provide a single classification
outcome on a mass-basis. Specifically, this method aims to find the optimal number of views
identified as malignant (N) sufficient to correctly consider the whole mass as malignant, and is
motivated by the fact that only a few views with a high malignancy probability (T) could be
sufficient to correctly classify the whole mass as malignant, regardless the predicted probabilities
of the other remaining views. To efficiently implement this approach as an output fusion strategy
for the nine view-based computerized diagnostic system, several combinations of number of
considered views (N) and probability threshold used to classify the views as malignant (T) were
investigated, and the classification performance was reported for each pair. Since a given pair of
parameters N and T corresponds to a single ROC operating point, each classification perfor-
mance is provided in TPR and FPR.

The experiment was repeated for five different values of T (0.1, 0.25, 0.5, 0.75, and 0.9), and
with N ranging between 1 and 9 for each T investigated. The final optimal pair (T;N) was
selected to provide the highest TPR associated with the lowest FPR.

Figure 9 shows the results of this analysis. As expected, the sensitivity was inversely propor-
tional to the number of considered viewsN (and the same was for the FPR). The best results were
achieved when a single view with a high predicted malignancy probability (T > 0.9) was con-
sidered to classify the whole mass as malignant, regardless the predicted probability of the other
views. Results confirmed the hypothesis that considering only a low number of views with a high

Fig. 9 Results of the view malignancy likelihood analysis.
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predicted malignancy probability is sufficient to correctly classify a breast mass as malignant,
reaching a sensitivity of 95% (for N ¼ 1 view) with respective FPR of 31%.
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