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ABSTRACT 

Purpose: Cone-beam breast CT (bCT) provides volumetric images of the uncompressed breast but present higher noise 

than 2D mammography. Deep Learning (DL) denoising with supervised training has shown successful CBCT noise 

reduction but requires matched low-dose and high-dose images. Self-supervised training removes that requirement but 

often assume locally independent noise. This work studies the impact of bCT noise correlation on self-supervised denoising 

methods. 

Methods: The self-supervised training strategies included two blind spot methods – Noise2Self, enforcing local similarity 

with independent image noise; and Noise2Sim, enforcing image similarity in presence of correlated noise – and two 

Noisier2Noise approaches: i) noise injection in the image domain; and, ii) noise injection in projection domain with a 

model of noise correlation. Self-supervised training was performed on bCT images generated from 150 voxelized models 

with a high-fidelity forward projector, including models of the x-ray spectrum, polychromatic attenuation, and detector 

signal and noise propagation. Denoised images were assessed with respect to high-dose references and supervised 

denoising, using RMSE, SSIM, and noise power spectrum (NPS). 

Results: Noise2Sim and Noisier2Noise with noise injection in the projection domain showed good performance in 

presence of correlated noise, achieving RMSE of 0.21 and 0.18 (SSIM of 0.9 and 0.94), respectively, compared to RMSE of 

0.17 (SSIM of 0.93) for supervised training. The independent noise assumption in Noise2Self and Noisier2Noise with image 

domain noise injection resulted in significantly diminished performance, yielding RMSE of 0.23 and 0.37 (SSIM of 0.86 and 

0.84). The NPS measurements revealed a shift towards low frequency components for Noise2Sim, arising from blurring of tissue 

boundaries and residual image transfer induced by the masking of dissimilar regions in the loss function. Noisier2Noise showed 

a frequency distribution of noise closer to the high-dose reference. Such performance was slightly degraded for non-

matched noise injection models inducing shorter correlation kernels than the nominal detector noise correlation, but models 

inducing longer correlation showed negligible impact in the denoising results. 

Conclusion: Self-supervised denoising in presence of correlated noise was proved feasible. Among the evaluated models, 

Noisier2Noise strategies with projection domain noise injection showed denoising performance comparable to supervised 

training and noise spectral distribution comparable to high-dose bCT. 
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1. INTRODUCTION 

Breast CT (bCT) systems, based on cone-beam CT (CBCT) geometries with high-resolution flat-panel detectors, have 

been developed over the last ~15 years. Clinical bCT studies showed that the true volumetric information in bCT provided 

excellent visualization of soft tissue features and improved capability for detection and characterization of cancerous 

lesions, compared to 2D mammography or to digital breast tomosynthesis, at comparable radiation dose. However, at 

equidose conditions, bCT results in increased image noise from lower exposure in individual projection views and from 

amplification of high frequencies caused by the filtering stage in filtered backprojection reconstruction algorithms, 

commonly used for bCT image reconstruction. 

Recent developments in deep convolutional neural networks (CNNs) for data-driven image restoration, have shown great 

potential for denoising in photographic1 and in x-ray CT and CBCT imaging.2 Deep learning (DL) denoising networks 

have been conventionally trained using supervised approaches that minimize the mean squared error (MSE) loss, computed 

between the CNN inference, with a normal (or low) dose (ND) image as input, and a matched high-dose (HD) target, 

within the Noise2Clean paradigm.2 However, such matched datasets are rarely available. The dual noise level requirement 

was relaxed with the introduction of the Noise2Noise3 strategy, that proved that minimization of MSE across pairs of noisy 

images with zero-mean independent and identically distributed (i.i.d.) noise realizations, and matched image content, 
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converged to an equivalent solution. While more attainable, acquisition of two matched scans of the same patient is seldom 

feasible in clinical bCT. Self-supervised training approaches aim at alleviating the need for paired noise realizations by 

building loss functions employing targets derived from the noisy input that act surrogates of the clean signal. 

Self-supervised strategies demonstrated denoising performance comparable to Noise2Clean in photographic imaging, but 

their performance is impacted by the correlated nature of noise in CT (and bCT), arising from correlation between the 

noise in neighboring detector pixels and from correlations introduced by the backprojection operator. In this work we 

characterize the impact of bCT noise correlation on self-supervised DL denoising leveraging high-fidelity models of the 

bCT imaging chain. 

2. METHODS  

2.1. High-fidelity bCT simulation with correlated noise models. 

Realistic bCT projection data were generated from a collection of 150 voxelized digital breast models, derived from real 

bCT images of uncompressed breasts, scanned in pendant geometry, and segmented into skin, adipose, and fibroglandular 

tissue.4 The voxel size in the bCT models ranged from 0.194 mm to 0.427 mm in the coronal plane (0.191 mm to 0.238 

mm in the axial plane). A high-fidelity CBCT simulator5 was used to generate realistic bCT data from the digital breast 

models. The simulator integrates accurate models of the bCT imaging chain physics (system geometry, incident spectrum, 

focal spot blur, and detector response) into a polyenergetic forward projection engine. The detector response featured an 

energy-dependent model of correlated quantum noise in the projection domain, derived from cascaded systems analysis.6 

The level of noise and correlation kernel (k) was dependent on the input exposure and incident spectrum, calculated after 

polychromatic attenuation for each line integral. Detector electronic noise was simulated by injecting uncorrelated 

Gaussian noise to the final projection.5 

BCT datasets with 500 projections were simulated using a system geometry pertinent to current generation bCT scanners,7 

with source-to-axis distance (SAD) of 500 mm, source-to-detector distance (SDD) of 700 mm, and central ray placed 20 

mm below the chest wall. The simulation included a 1024x1024 pixels flat-panel detector with a 250 mg/cm2 CsI 

scintillator, and isotropic pixel size of 0.25 mm. The x-ray spectrum was simulated as a tungsten anode x-ray source, with 

60 kV and 0.2 mm Gd added filtration. A total of 150 bCT volumes (one per voxelized digital model) were generated at 

two dose levels: i) a normal-dose setting with source current of 0.8 mAs (denoted ND); and, ii) a reference high-dose 

setting obtained with 5.0 mAs (denoted HD). The HD and ND projection datasets were then reconstructed with FBP and 

a raised cosine filter with Hamming apodization (cutoff = 0.9). Two independent noise realizations were computed for 

each dose level, to allow quantification of noise in matched difference images. 

2.2. Self-supervised DL denoising strategies. 

Following the Bayesian formulation for DL denoising, an image contaminated by noise, 𝒙𝒊, can be expressed as a 

combination of a noise-free signal (𝒔𝒊) and a noise component (𝒏𝒊), sampled from a joint probability distribution 𝑝(𝒔, 𝒏) =
𝑝(𝒔)𝑝(𝒔|𝒏). DL denoising methods aim at learning a function f, implemented as a neural network with tunable parameters 

𝜽, that estimates a sample �̂�𝒊 of the noise-free signal from a noisy input, such that �̂�𝒊 = 𝑓(𝒙𝒊; 𝜽). Conventional supervised 

training uses noise-free (or very low noise, as in the HD dataset in this work) images 𝒚 to find the 𝜽 that minimizes the 

MSE loss, given by ℒ(𝜽) = 𝔼𝒊‖𝑓(𝒙𝒊, 𝜽) − 𝒚𝒊‖
2. 

When no clean reference targets are available, self-supervised training approaches replace the noise-free instances 𝒚𝒊 in 

ℒ(𝜽) with a surrogate signal derived from the noisy input datasets. As stated above, two main strategies are explored in 

this work: blind-spot training and Noisier2Noise training. 

2.2.1. Blind-spot training with independent noise assumptions (Noise2Self). 8  

In blind-spot training, 𝜽 is obtained by minimizing the MSE loss on a subset J of the dimensions of the input 𝒙, with 𝒙𝒋 

defined as 𝒙 restricted to J. By setting a function 𝒥 that define a partition of the dimensions of 𝒙, the MSE supervised loss 

ℒ(𝜽) = 𝔼𝒊‖𝑓𝐽(𝒙𝒊, 𝜽) − 𝒚𝒊,𝑱‖
2
, computed over 𝒥, converges to the optimal denoiser, as long as 𝒥 is an invariant function 

(preventing learning the identity) and the noise in each J in 𝒥 is independent from the noise in its complement Jc. This last 

condition is not strictly fulfilled in the presence of correlated noise. In this work, 𝒥 was a set of grid masking functions, 

with masking interval of L pixels. We set L = 32 pixels in our experiments. 
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2.2.2. Blind-spot training with correlated noise assumptions (Noise2Sim).  

To avoid the impact of noise correlations in the Noise2Self loss, the Noise2Sim9 strategy proposed to compute the MSE 

loss using a distinct but similar image 𝒙𝒋 as target, and replace 𝒥 by a function that estimates the pixel-wise dissimilarity 

of the input and target images, defining the following cost function: 

ℒ(𝜽) = 𝔼𝒊,𝒋‖(𝑓(𝒙𝒊, 𝜽) − 𝒙𝒊𝒋)°𝒎𝒊𝒋‖
2
 (1) 

𝑑𝑖𝑗(𝑢, 𝑣) = √1
𝑠2⁄ ∑ (𝑥𝑖(𝑝, 𝑞)𝑝,𝑞 ∈ 𝑆 − 𝑥𝑗(𝑝, 𝑞))2   (2) 

where 𝒎𝒊𝒋 is a mask function set to zero for 𝑑𝑖𝑗(𝑢, 𝑣)  <  𝑑𝑡ℎ, and 𝑑𝑖𝑗  is a distance function computed over a path S of size 

s. For the Noise2Sim experiments, 𝒙𝒋 was set to a randomly selected coronal slice within 1 cm of the noisy input. The 

values of 𝑑𝑡ℎ and s were optimized as a function of the training performance (s = 3 pixels and 𝑑𝑡ℎ = 0.004 mm-1). 

2.2.3. Noisier2Noise training with noise injection in the image domain (Noisier2Noiseimg).  

The Noisier2Noise10 approach attempts to minimize the MSE loss computed using a synthetic version of the noisy image, 

𝒛𝒊, obtained by adding a noise realization obtained from a known noise distribution, 𝒜, that matches the noise in 𝒙𝒊. Thus, 

the input synthetic image is obtained as 𝒛𝒊 = 𝒙𝒊 + 𝒏𝒔𝒚𝒏𝒕𝒉 = 𝒔𝒊 + 𝒏𝒊 + 𝒏𝒔𝒚𝒏𝒕𝒉, and the final loss function is computed as 

ℒ(𝜽) = 𝔼𝒊‖𝑓(𝒙𝒊 + 𝒏𝒔𝒚𝒏𝒕𝒉, 𝜽) − 𝒙𝒊‖
2
. 

As shown in Ref. 10, under the assumption that 𝒏𝒊 and 𝒏𝒔𝒚𝒏𝒕𝒉 are i.i.d., 𝔼[𝒚|𝒛] = 2𝔼[𝒙|𝒛] − 𝒛, which enables estimation 

of a denoised image (�̂�) by doubling the network output and subtracting its input. In our Noisier2Noiseimg approach we 

followed the simplest CT noise model and compute 𝒏𝒔𝒚𝒏𝒕𝒉 as a per pixel independent realization of a Poisson distribution, 

added directly in the reconstructed image domain, disregarding correlations introduced by the flat-panel detector and the 

backprojection operator. 

2.2.4. Noisier2Noise training with noise injection in the projection domain (Noisier2Noiseproj).  

The Noisier2Noiseproj explores a physically principled noise model for injection of noise in the projection domain, prior to 

image reconstruction. The generated synthetic input, 𝒙𝒔𝒚𝒏𝒕𝒉, included realistic models of signal formation, and correlations 

introduced by the detector and backprojection. 

The noise model is described in Refs. 5, 6, yielding the following expressions for 𝒙𝒔𝒚𝒏𝒕𝒉 and the MSE loss: 

𝒙𝒔𝒚𝒏𝒕𝒉 = 𝐹𝐵𝑃 (𝛼𝒑 + (𝒘 ° √𝑄(𝛼𝒑) − 𝛼2𝑄(𝒑)) ∗ 𝑘) (3) 

ℒ(𝜽) = 𝔼𝒊‖𝑓(𝒙𝒔𝒚𝒏𝒕𝒉𝒊
 , 𝜽) − 𝒙𝒊‖

2
 (4) 

Where 𝒑 is the set of projections images contributing to 𝒙, 𝐹𝐵𝑃() is the tomographic reconstruction operator, 𝛼 is the dose 

reduction factor, set to assume addition of two equidose independent realizations, 𝒘 is a vector of noise sampled from a 

normal distribution [𝒩(0,1)], 𝑄 is a function operator relating the variance of the quantum noise to the mean signal,5,6 and 

𝑘 is the quantum noise correlation kernel, estimated from cascaded systems analysis. To investigate the impact of the 

mismatch in the noise correlation model, we scaled the width of k by a factor of 0x, 0.5x, 2x, and 3x its nominal width, 

thus, ranging from a mismatched model with no detector correlation to a mismatched model that triples the detector 

correlation length. 

2.2.5. Training setup and experimental validation.  

The 150 bCT volumes were split into 120 for training, 10 for validation, and 20 for testing. For each volume 10 coronal 

slices were extracted at random positions (total of 1200 training instances (100 validation, 200 testing). All denoising 

methods used a common U-NET architecture and the same augmentation methods: random crop into 128 x 128 pixels 

patches, and random rotation at discrete values of 0, 90, 180, and 270 deg. All networks were trained with the Adam 

optimizer with learning rate decay and initial learning rate of 0.005. A Noise2Clean denoising was obtained to serve as 

upper bound for the self-supervised methods. 

The denoising results were evaluated in terms of root mean squared error (RMSE) and structural similarity (SSIM) 

computed against the HD reference. Denoising inferences in two noise instances of the same anatomy were used to evaluate 

the NPS, measured on the difference between the two independent inferences. NPS was measured on 9 non-overlapping 

regions of interest (ROIs) with 50 x 50 pixels, fully contained within the breast region. 

Proc. of SPIE Vol. 12463  124630L-3



 

 
 

 

3. RESULTS 

Fig. 1 shows RMSE and SSIM in the 200 test images, and Fig.2 show example image results for all self-supervised denoising 

methods. Quantitative evaluation confirmed that correlations in bCT noise pose a significant challenge to blind-spot denoising 

with pixel-wise independent noise assumptions, as in Noise2Self that yielded median RMSE = 0.0023 mm-1 (SSIM = 0.86), 

compared to RMSE = 0.0017 mm-1 (SSIM = 0.93) for the supervised approach, used as upper-bound performance level. The 

poor match between the bCT noise model and the image-based noise addition in Noisier2Noiseimg resulted in lower RMSE = 

0.0037 mm-1 (SSIM = 0.84), comparable to the input ND image. Blind-spot denoising with Noise2Sim successfully 

accommodated noise correlations and provided superior denoising results, with RMSE = 0.0021 mm-1 (SSIM = 0.9). The slight 

lower performance compared to Noise2Clean arises from slight blurring around tissue boundaries and introduction of noise 

texture associated with the removal of dissimilarities from the loss function in Eq. 1 that tend to align with boundaries between 

adipose and fibroglandular tissue. Finally, Noisier2Noiseproj, with a perfectly matched noise correlation model, yielded the best 

performance with RMSE = 0.18 mm-1 (SSIM = 0.94), comparable to supervised denoising. 

 

 
Figure 1. RMSE and SSIM as a function of the denoising approach. Noise correlation diminished the performance of Noise2Self and Noisier2Noiseimg while 

Noise2Sim and Noisier2Noiseproj achieved results comparable with supervised training. 

 

 

 
Figure 2. Image results for the HD reference (A), and noisier ND counterpart (B) in comparison with the reference supervised denoising Noise2Clean (C). 

Self-supervised denoising results for Noise2Self (D), Noise2Sim (E), Noise2Noiseimg (F), and Noise2Noiseproj (G). Images in the bottom row quantify the residual 

norm computed as the difference image with respet to the HD reference.  
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The effects of denoising on noise texture are illustrated in Fig. 3, that shows example difference images from two input images 

with different noise realizations. Visual inspection of the difference images and NPS showed the inability of Noise2Noiseimg 

and Noise2Self to achieve successful denoising. In the case of Noise2Sim and Noisier2Noiseproj both achieved a reduction in 

mean NPS, and showed some propagation of image structure into the noise, resulting in a shift of the NPS towards low 

frequency bands. This effect is more conspicuous for Noise2Sim, from instabilities at tissue boundaries induced by the masking 

approach. Quantification of noise power in low, mid and high frequency bands (Fig. 4) corroborated the better agreement in 

noise texture between the HD reference and Noisier2Noiseproj. 
 

 
Figure 3. Example HD reference (A) and denoising results for one of the testing cases (B-F). Noise images, computed as the difference in output between two 

independent realizations quantify the pixel-wise noise level of the denoised output, as well as the propagation of anatomical structures into the noise pattern. 
(M-R) NPS for the ND reference and the denoised images show overall noise reduction as well as shift in the noise frequency content and, therefore, noise 

texture for the different apporaches. Both Noise2Sim and Noisier2Noiseproj achieved noise levels comparable to Noise2Clean, with Noisier2Noiseproj NPS more 

closely resembling the HD noise texture. 

 

 

 
Figure 4. Quantification of the difference in total noise for 3 diferent frequency bands (low, mid, amd high), illustrated in Fig. 3. Noise2Sim showed slight shift 
towards low-frequency noise, while Noisier2Noiseproj resulted in better agreement with the noise frequency distribution of HD and Noise2Clean across bands.  
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The results in Fig. 3 and Fig. 4 were obtained with a perfectly matched noise model that might not be always available. Fig. 5 

illustrates the impact of deviations on the width of the detector noise correlation kernel. When no correlation is applied and only 

correlations induced by the backprojection operator are included, a decrease in denoising performance is observed, resulting in 

slight blurring at tissue boundaries and shift of NPS towards low frequencies. Effects of models imparting longer correlation 

range than the ideal model resulted in much lower impact and showed similar denoising capabilities and noise frequency 

distribution than those obtained with a perfectly matched model. 

 

 
Figure 5. Results for Noisier2Noise with mismatched detector noise correlation kernel, ranging from no correlation for k = 0 (A), to perfect correlation matching 
k = 1 (B), to a much longer correlation kernel k = 3 (C). (D) Structural similarity and NPS difference with the HD reference for the low, mid, and high frequency 

band. Mismatches in noise correlation resulted in moderate degradation of SSIM and increased blurring, as well as shift of noise texture towards low frequencies. 

Mismatched models with long correlation kernels showed more robust performance, with similar SSIM and NPS distriubution as the one obtained with the 
perfectly matche noise model. 

4. CONCLUSIONS 

This works presents a comprehensive study of the performance of self-supervised DL denoising in bCT in the presence of 

noise correlation. A representative set of training approaches were used with synthetic bCT data including accurate models 

of signal and propagation and noise spatial correlation. Noisier2Noise models with noise injection in the projection domain 

showed denoising performance comparable to supervised training while yielding a noise frequency distribution similar to 

high-dose data. 
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